Financial Performance of Selected IT Companies in India; A Panel Data Approach

Surat Singh
Dean Research, CT University, Ludhiana, Punjab, India

Tegjit Kaur Sachdeva
Research Scholar, Desh Bagat University, Gohindgarh, Punjab, India

Abstract
Despite the global economy growing up, the Indian Information technology industry is maintaining a steady pace of growth. Financial analysis is an aspect of the overall business finance function that involves examining historical data to gain information about the current and future financial health of a company. IT has the great possibility of becoming an engine of accelerated economic growth, efficiency, improvement for all sectors of the economy, developing India’s position in the export market, improving trade insufficiency, and means of efficient governance. It enhances the way into information, protects consumers, provides access to government services, makes skill creation and training more effective, improves the liberation of health services, and promotes simplicity. The inter-firm financial performance differential has been utilized to identify the factors that are critical in determining their financial performance. In this study, only the cross-sectional data of three countries over 10 years is collected. The cross-sectional samples are relatively small. Therefore, it is appropriate to use the LSDV Model. However, the pooled regression model will also consider for comparison. It is also convenient to Model the pooled regression Model, LSDV Model and uses R-squared, adjusted R-squared and pool ability Test to decide statistically on appropriate Model to be used. The paper is structured as follows: it presents the scope of the study, a brief review of the literature dealing, followed by a description of the objectives, data, and methodology. Subsequently, it discusses the empirical results by two regression model and finally, offers the conclusion.

Keywords: Ratio Analysis, Information technology industries, LSDV, Panel Data, Pooled Data, Probability test

Review of Literature
Giannarakis et al. (2014) investigated the effect of corporate governance and financial characteristics on the extent of corporate social responsibility disclosures. A sample of (100) companies listed in the US was studied for the year 2011. The variables used are CEO duality, board meeting, boards’ average age, board composition, and women on board and board size as a proxy for the independent variable, while board commitment to CSR, profitability, and financial leverage was used as a dependent variable. The study employed a Multiple Linear Regression using the statistical package of E-views to test the effect of a dependent variable on the independent variable. The result of the study indicated that board commitment to CSR and profitability were found to be positively related to the extent of CSR disclosure, while financial leverage was negatively related to the extent of CSR disclosure. The study was conducted outside Nigeria, and the period covered was one year, which is seen as inadequate to give a valid result.
Kurawa and Kabara (2014) examined the impact of corporate governance on voluntary disclosure by firms in the downstream sector of the Nigerian petroleum industry. Secondary data obtained from the Annual Report and Accounts of the 7 sampled companies were used. The data were analyzed using descriptive statistics and Regression Analysis using the STATA package for the period 2001-2010. Board composition, managerial ownership, ownership concentration, and role duality were used as a proxy of the independent variable. The study revealed that ownership concentration was one of the major determinants of corporate governance and had a significant positive association with the extent of voluntary disclosure.

Rao et al. (2013) in their study entitled “An Empirical Analysis on Financial Performance of Public Sector Housing Corporation in India: A Case Study of HUDCO,” stated that the main notion of their study is Profitability and liquidity management is of crucial importance in financial management decision. The most favorable financial performance could be achieved by a company that can trade-off between profitability and liquidity performance indicators. The purpose of this study is to find out the financial position and know the significance of them. Descriptive statistics disclose that the performance of the selected unit in terms of liquidity, solvency, and profitability position is very satisfactory, and a relatively efficient financial position is found in 36 all the cases. They suggested that both the institutions under the study should concentrate on financial profitability, particularly unexplained variables in the purpose of creating shareholders’ wealth.

Bortolotti et al. (2002) examined the financial and operating performance of thirty-one national telecommunication companies in twenty-five countries that were fully or partially privatized through a public share offering. Using conventional pre-versus post-privatization comparisons and panel data estimation techniques, they find that the financial and operating performance of telecommunication companies improves significantly after privatization, but a sizable fraction of the observed improvement results from regulatory changes-alone or in combination with major ownership changes-rather than from privatization.

Objectives

In the background of the above discussion, the following broad objectives are outlined to Study of the financial performance of selected Information Technology Companies in India

- To analyze the financial efficiency of the Information Technology companies
- To identify the determinants of profitability of selected companies

Research Hypothesis

The following Hypothesis have been taken to test

H01: The other ratio does not differ significantly impact on the race.

Scope of the Study

The study aimed at the financial performance of Information Technology industries in India. Hence, the present study is about Indian top three Information Technology Companies. The study has used the financial facts of the selected companies from 2005-06 to 2014-15.

Sample Design

Sampling Technique: The study is done with special reference to IT Industries in India. The reason is that data or financial statements are readily available. Apart from this, IT industries in India are bound to disclose all their facts and figures publicly. Thus, the technique of ‘Convenience Sampling’ is being adopted for the study.

Sample Size: A sample of three IT Industries in India viz., TCS, Infosys, and WIPRO is considering for analysis.

Data and Variables

This study is based on secondary data and discussions with personnel concerned. The secondary data consists of the annual reports of three IT Industries and CMIE prowess ranging for the last 10 years.

Period of the Study

The study is conducted based on the audited financial statements of three selected companies of IT Industries for a period of 10years (2005-06 to 2014-15) The duration of the period is good enough
to cover the short term fluctuations and is sufficient to provide insights into the performance of the different selected companies.

Empirical Strategy
To achieve the above-mentioned objectives, the upcoming methodology has been adopted.

Methodology
The present study adopts an analytical Empirical research design. The data of the sample IT industries have been collected from the annual reports published by the IT industries and CMIE prowess. The following tools & techniques have been classified in the study.

Ratio Analysis
A Ratio is a figure showing the logical relationship between any two items taken financial Statement. Several ratios are used by financial analysis. They can be classified as profitability ratio, activity ratio, liquidity ratio, and solvency ratio.

Panel Data Analysis
To identify the significant determinants of the financial performance of companies in India, panel data regression has been explicitly estimated over the given study period. Different ratios have been used to measure the financial performance as well as the firm-specific characteristics of the sampled companies. The rationale behind choosing a particular variable as dependent or independent has been discussed in the upcoming section of this paper.

Choice of Variables
The dependent, as well as the Independent Variables used to study the objectives mentioned in the present paper, have been discussed in the approaching section.

Dependent Variable – Return on Capital Employed
The accounting-based measure used in this study is –Return on Capital Employed (ROCE) is best defined as operating profit divided by capital employed (net worth plus debt)
Explanatory Variables- Current ratio, Debtor Collection Period, Debt-Equity Ratio, Interest Coverage Ratio, Fixed Asset Turnover Ratio.

Thus, Panel data analysis has been used because the data set includes both cross-sectional as well as time-series data. Moreover, as each cross-sectional unit in the dataset has the same number of time-series observations, the study has used a balanced panel.

The following are the two type of panel analytic Model
1. Pooled regression Model
2. Fixed effect Model (LSDV)

Panel Data Analysis
For the financial performance of IT companies, the effect of six variables on ROCE of three IT companies will be analyzed in two different regression Models.
1. Pooled Regression Model
2. Least-Squares Dummy Variables Model

Pooled Regression Model
The Pooled OLS is a pooled linear regression without fixed and random effects. It assumes a constant intercept and slopes regardless of group and period. For the testing of the following hypothesis, pooled regression OLS has been applied to find out the impact of independent variables on dependent variables if intercept & slope are constant.

H0: There is no significant impact of an independent variable on the dependent variable.
The Mathematical Equation for Pooled Regression Model is given below:

\[y_{it} = \alpha + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{it} \]

where

- \(y_{it} \) - the dependent variable;
- \(x_{kit} \) - the k-th explanatory variable;
- \(u_{it} \) - the error /disturbance term;
- \(\alpha \) – the intercept;
- \(\beta_1, \ldots, \beta_k \) – the structural parameters;

In this study, dependent variable (Y_t) is Return of Capital Employed (roce) and independent variable \(X_1, X_2 \) is Current ratio (cr), dependent collection (dcp), Dividend Payout Ratio (dpr), Debt to Equity Ratio (der), Interest Coverage Ratio (icr), Fixed Asset Turnover Ratio (fatr)

The Pooled Regression Model to be estimated is:

\[\text{roce} = \alpha + \beta_1 \text{cr} + \beta_2 \text{dcp} + \beta_3 \text{dpr} + \beta_4 \text{der} + \beta_5 \text{icr} + \beta_6 \text{fatr} + u \]

\(\alpha \) is the intercept Return on Capital Employed
\[\beta_i \] is the slope of Current Ratio
\[\beta_j \] is the slope of the Debtor Collection Period
\[\beta_k \] is the slope of Dividend Payout Ratio
\[\beta_l \] is the slope of the Debt Equity Ratio
\[\beta_m \] is the slope of Interest Coverage Ratio
\[\beta_n \] is the slope of Fixed Asset Turnover Ratio

The results of the above equation are as given in the following table:

Table 1 Pooled Data Analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2054.31845</td>
<td>6</td>
<td>342.386409</td>
</tr>
<tr>
<td>Residual</td>
<td>646.765211</td>
<td>23</td>
<td>28.1202266</td>
</tr>
<tr>
<td>Total</td>
<td>2701.08367</td>
<td>29</td>
<td>93.140816</td>
</tr>
</tbody>
</table>

Number of obs = 30; F (6, 23) = 12.18
Prob > F = 0.0000; R-squared = 0.7606
Adj R-squared = 0.6981; Root MSE = 5.3029

Table B: Estimate of Regression Coefficient

| Rocate | coef. | Std. Err. | T | P>|t| | [95% Conf. Interval] |
|--------|--------|-----------|------|-------|---------------------|
| Cr | -4.182567 | 2.162618 | -1.93| 0.066 | -8.656282 - 0.2911486 |
| Dcp | -0.3646419 | 0.2109147 | -1.73| 0.097 | -0.8009522 - 0.2743166 |
| Dpr | -0.1024854 | 0.0739403 | -1.39| 0.179 | -0.2554422 - 0.0504717 |
| Der | -47.96903 | 15.94416 | -3.01| 0.006 | -80.95205 - 14.98601 |
| Icr | -0.0002612 | 0.0072566 | -0.04| 0.972 | -0.0152727 - 0.0077526 |
| Fatr | 5.803132 | 1.493087 | 3.89 | 0.001 | 2.714447 - 8.891817 |
| _cons | 50.84479 | 17.66386 | 2.88 | 0.008 | 14.30432 - 87.38526 |

Dependent Variable: roce; Method: Pooled Least Square.

The R-squared (\(R^2 \)) for the regression model represents the measure of goodness of fit or the coefficient of determination, obtained as the proportion of the model SS in total SS, that is \(2054.31/2701.08 = 0.7606 \), \(R^2 = 0.7606 \).

The adjusted \(R^2 \) (or R-bar-squared, \(R^2_{\text{adj}} \)) is the R-squared adjusted for degrees of freedom, obtained as:

\[R^2_{\text{adj}} = 1 - \frac{\text{MSresidual}}{\text{MSTotal}} = 1 - \frac{\text{Residual SS}/\text{dfresidual}}{\text{Total SS}/\text{dftotal}} = 1 - (1 - R^2)/(\text{dfresidual})/\text{dftotal} \]

Thus \(R^2_{\text{adj}} = 1 - (1 - 0.7606)/(23/29) = 0.6981 \).

Table (b) Shows, The first term Return on Capital Employed on the first line of the table gives the dependent variable. The estimates of the marginal effects of Current ratio, Debtor Collection Period, Debt Equity Ratio, Interest Coverage Ratio, Fixed Asset Turnover Ratio, and the intercept are given as coefficients (coef) along with the standard error (Std. Err.) and the corresponding t-values (t) and two-tailed significance level (p-value, P>|t|).

The estimated regression equation from the above table is:

\[\text{roce} = 50.844 - 4.18 \text{cr} - 0.364 \text{dcp} - 0.102 \text{dpr} - 47.96 \text{der} - 0.0002 \text{icr} + 5.80 \text{fatr} \]
(the estimated Model assumes that the intercept value of TCS, Infosys and Wipro are the same)

Empirical Analysis of this study finds that Fixed Asset Turnover Ratio, Debt to Equity Ratio, and Current Ratio prove to be key explanatory variables of Return on Capital Employed at 1% and 5% level of significant. So it is concluded that the Return on Capital Employed increases with an increase of Fixed Asset Turnover Ratio and a decrease of Debt to Equity Ratio and Current Ratio.

Least-Squares Dummy Variables (LSDV) Regression Model

One way to take into account the “individuality” of each company or each cross-sectional unit is to let the intercept varies across the companies but that the slope coefficients remain constant across the firms. To analysis, the following Model is used.

\[y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i \]

Where

\(\beta_1 \): intercept,

\(X_1, X_2 \): are independent variables

\(y_i \): Value of dependent variable

Notice that we have put the subscript \(i \) on the intercept term to suggest that the intercepts of the three firms may be different; the differences may be due to special features of each company, such as managerial style or managerial philosophy

In the literature, Equation (iii) is known as the Fixed Effects Regression Model (LSDV). The term ‘fixed effects’ is because, although the intercept may differ across individuals (here the three companies), each individual’s intercept does not vary over time; that is, it is time-invariant. Notice that if we were to write the intercept as \(\beta_{1i} \), it would suggest that the intercept of each company or individual is time-variant. It may be noted that the LSDV given in (Eq. iii) assumes that the coefficients of the regressors do not vary across individuals or over time.

Now intercept to vary across the companies. We can easily do that by using the dummy variable technique, particularly, the differential intercept dummies.

\[y_i = \alpha_1 + \alpha_2 C_{1i} + \alpha_3 C_{2i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i \]

Since we have three companies, we have used only two dummies to avoid falling into the dummy variable trap (i.e., the situation of perfect collinearity). Here there is no dummy for TCS. In other words, \(\alpha_i \) represents the intercept of TCS and \(\alpha_2 \) and \(\alpha_3 \) the differential intercept coefficients that show by how much the intercepts of Infosys, Wipro differ from the intercept of TCS. In short, TCS becomes a comparison company. Since we are using dummies to estimate the fixed effects, in the literature, the model (Eq. iv) is also known as the Least-squares dummy variable (LSDV) model. So, the terms fixed effects and LSDV can be used inter-changeably. In passing, note that the LSDV model (Eq. iv) is also known as the Covariance Model, and \(X_2 \) and \(X_3 \) are known as selected six covariates variables like Current Ratio (cr), Dividend Collection Period (dpr). An advantage of this model is that all the parameters can be estimated by OLS. The result of the fixed effect Model may resemble with Pooled Regression Model

The LSDV Model to be estimated is:

\[y_i = \alpha_1 + \alpha_2 C_{1i} + \alpha_3 C_{2i} + \beta_2 \text{cr} + \beta_3 \text{dcp} + \ldots + u_i \]

Where

\(C_{1i} = 1 \) if the observation belongs to INF, 0 otherwise;

\(C_{2i} = 1 \) if the observation belongs to WIP, 0 otherwise.

The results of the above equation are as given in the following table 2

<table>
<thead>
<tr>
<th>Linear regression</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roste</td>
<td>coef.</td>
<td>Std.Err</td>
<td>T</td>
<td>P></td>
</tr>
<tr>
<td>Cr</td>
<td>-5.365547</td>
<td>2.512049</td>
<td>-2.14</td>
<td>0.045</td>
</tr>
<tr>
<td>Dcp</td>
<td>-0.5197139</td>
<td>0.2168529</td>
<td>-2.4</td>
<td>0.026</td>
</tr>
<tr>
<td>Dpr</td>
<td>-0.1403557</td>
<td>0.0685673</td>
<td>-2.05</td>
<td>0.053</td>
</tr>
<tr>
<td>Der</td>
<td>-38.5162</td>
<td>12.75634</td>
<td>-3.02</td>
<td>0.007</td>
</tr>
<tr>
<td>Icr</td>
<td>0.0031823</td>
<td>0.0059152</td>
<td>0.54</td>
<td>0.596</td>
</tr>
</tbody>
</table>
The comparison of equation (ii) and (v) shows that the intercept values of three companies are statically different being 70.84 for TCS, 81.97 (70.84 + 11.13) for Infosys, and 76.11 (70.84 + 5.36) for Wipro. This difference in intercepts eventually generates the following three regression equations with Dummy variables as:

\[
\text{roce} = 70.84 + 11.13\text{C}_1i + 5.36\text{C}_2i - 5.36\text{cr} - 0.519\text{dcp} - 0.14\text{dpr} - 38.51\text{der} + 0.003\text{icr} + 3.09\text{fatr} \quad \text{iv (a)}
\]

\[
\text{TCS: roce} = 70.84 + 11.13(0) + 5.36(0) - 5.36\text{cr} - 0.519\text{dcp} - 0.14\text{dpr} - 38.51\text{der} + 0.003\text{icr} + 3.09\text{fatr} \quad \text{(v)}
\]

\[
\text{INF: roce} = 81.97 + 11.13(1) + 5.36(0) - 5.36\text{cr} - 0.519\text{dcp} - 0.14\text{dpr} - 38.51\text{der} + 0.003\text{icr} + 3.09\text{fatr} \quad \text{(vi)}
\]

\[
\text{WIP: roce} = 76.11 - 5.36\text{cr} - 0.519\text{dcp} - 0.14\text{dpr} - 38.51\text{der} + 0.003\text{icr} + 3.09\text{fatr} \quad \text{(vii)}
\]

Thus the estimated Regression Equation are

\[
\text{TCS: Roce} = 70.84 - 5.36\text{cr} - 0.519\text{dcp} - 0.14\text{dpr} - 38.51\text{der} + 0.003\text{icr} + 3.09\text{fatr} \quad \text{v (a)}
\]

\[
\text{INF: Roce} = 81.97 - 5.36\text{cr} - 0.519\text{dcp} - 0.14\text{dpr} - 38.51\text{der} + 0.003\text{icr} + 3.09\text{fatr} \quad \text{vi (b)}
\]

\[
\text{WIP: Roce} = 76.11 - 5.36\text{cr} - 0.519\text{dcp} - 0.14\text{dpr} - 38.51\text{der} + 0.003\text{icr} + 3.09\text{fatr} \quad \text{vii (c)}
\]

These differences in intercepts may be due to the special features of each company, such as managerial style or managerial philosophy.

Empirical Analysis of this study find that Current Ratio, Debtor Collection Period and Debt to Equity Ratio prove to be key explanatory variables of Return on Capital Employed at 1% and 5% level of significant.

So it is concluded that Return on Capital Employed increases with a decrease of Current Ratio, Debtor Collection Period and Debt to Equity Ratio.

Pool Ability Test

Comparison with the pooled regression model and the LSDV fixed effects model are Shown in the following table:

<table>
<thead>
<tr>
<th>Current Ratio (Cr)</th>
<th>Model I</th>
<th>Model II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.18 (P < 0.06)</td>
<td>-5.36 (P < 0.04)</td>
</tr>
<tr>
<td>Debtor Collection Period (Dcp)</td>
<td>-0.36 (P < 0.09)</td>
<td>-0.51 (P < 0.02)</td>
</tr>
<tr>
<td>Dividend Payout Ratio (Dpr)</td>
<td>-0.102 (P < 0.17)</td>
<td>-0.14 (P < 0.05)</td>
</tr>
<tr>
<td>Debt to Equity Ratio (Der)</td>
<td>-47.9 (P < 0.06)</td>
<td>-38.51 (P < 0.007)</td>
</tr>
<tr>
<td>Interest Coverage Ratio (Icr)</td>
<td>-0.0002 (P < 0.97)</td>
<td>-0.0003 (P < 0.596)</td>
</tr>
<tr>
<td>Fixed Asset Turnover Ratio (Fatr)</td>
<td>5.8 (P < 0.001)</td>
<td>3.09 (P < 0.02)</td>
</tr>
<tr>
<td>Overall (roce) (baseline intercept)</td>
<td>50.84 (P < 0.008)</td>
<td>70.84 (P < 0.0007)</td>
</tr>
<tr>
<td>(INF) IT – 2 (C1)</td>
<td>--</td>
<td>11.13 (P<0.09)</td>
</tr>
<tr>
<td>(WIP) IT – 3 (C2)</td>
<td>--</td>
<td>5.3 (P<0.297)</td>
</tr>
<tr>
<td>F- Test</td>
<td>12.18</td>
<td>22.38</td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>R²</td>
<td>.7606</td>
<td>.8019</td>
</tr>
</tbody>
</table>

Comparing Model (i) and (ii) we found that the f- statistic increases from 12.18 to 22.38 (P < .0000) and R² increase from .7606 to .8019. Thus LSDV fit the data better than does pooled OLS. The parameter estimates of individual regressors in case of Model II are slightly different from those in Model I in table 3.
Note that compared with the LSDV Model, the Pooled Regression Model is a restricted model; it imposes a common intercept on all companies. Hence we have to apply the restricted F test given by

\[F = \frac{(R^2_{UR} - R^2_{R})/2}{(1 - R^2_{UR})/21} \]

\text{(viii)}

Where
\[R^2_{UR} \] of the unrestricted regression (second model) = 0.8019
\[R^2_{R} \] of the restricted regression (first model) = 0.7606

Hence we find that the difference in the observe value (f=10.55) is higher than the table value \(F=2.51 \) for \(v_1=2 \) and \(v_2=21 \) at a 1% level of significance. Therefore we conclude from the F Test also that the LSDV analysis is better than pooled data analysis.

Finding of a Pooled Regression Model

The intercept value of TCS, Infosys and Wipro are the same.

Fixed Asset Turnover Ratio, Debt to Equity Ratio, and Current Ratio prove to be a key explanatory variable of Return on Capital employed at 1% and 5% level of significant. The Return on Capital employed increases with an increase of Fixed Asset Turnover Ratio and decrease of Debt to Equity Ratio and Current Ratio.

Finding of LSDV Regression Model

The intercept value of TCS, Infosys, and Wipro are different. These differences in intercepts may be due to the special features of each company, such as managerial style or managerial philosophy. Current Ratio, Debtor Collection Period, and Debt to Equity Ratio prove to be key explanatory variables of Return on Capital Employed at 1% and 5% level of significant. Return on Capital employed increases with a decrease in Current Ratio, Debtor Collection Period, and Debt to Equity Ratio.

Finding Related to Comparison between Pooled Data Model and the LSDV Model

The difference in the observed value (f=10.55) is higher than the table value \(F=2.51 \) for \(v_1=2 \) and \(v_2=21 \) at a 1% level of significance.

Conclusion

We conclude from the F Test also that the LSDV analysis is better than pooled data analysis in information technology industries.

References

Author Details
Dr. Surat Singh, Dean Research, CT University, Ludhiana, Punjab, India, Email ID: suratsingh789@gmail.com

Tegjit Kaur Sachdeva, Research Scholar, Desh Bagat University, Gobindgarh, Punjab, India, Email ID: tegjitkaur321@gmail.com