ECONOMIC ORDER QUANTITY (EOQ) MODEL WHEN THE DEMAND IS PRICE AND TIME SENSITIVE USING PRESERVATION TECHNIQUES

Article Particulars
Received: 7.8.2017 Accepted: 4.10.2017 Published: 30.10.2017

H.S.SHUKLA & M.A.SIDDIQUI
Department of Mathematics and Statistics,
DDU Gorakhpur University, Gorakhpur (UP), India

R.P.TRIPATHI
Department of Mathematics,
Graphic Era University, Dehradun (UK), India

Abstract
Many products cannot be sold after maximum lifetime or expiration dates due to their continuous deterioration. All deteriorating items have their expiration dates. Deterioration can be controlled by spending some cost of item preservation for seasonal products. The market price induceness analyzed with exponentially declining demand. New these days most of the daily consumable items deteriorate over time due to expiration, spoilage, damage etc. The main objective is to maintain the freshness of the products using preservation technology so that it can be used for original purpose. This paper deals with an EOQ model for damageable products when the demand rate is a function of price and time sensitive. Mathematical model is provided to find optimal cycle time and price which maximizes the total profit. Numerical example and sensitive analysis are given to illustrate the theoretical results.

Keywords: Preservation, deterioration; price-sensitive demand; inventory, declining demand.

Introduction
Large number of research papers has published on inventory models for deteriorating items such as past foods, green vegetables, bread, blood bank, medicine and fashion goods. Ghare and Schrader [1] considered an EOQ model for exponentially decaying items. Misra [2] established an economic order quantity model with a Weibull deterioration rate for the perishable items. Covert and Philip [3] have studied Weibull distribution and Gamma distribution as deterioration. Number of literature review on EOQ with deteriorating items is done by Raafat [4], Shah and Shah [5], Soni [6], Giri & Chaudhuri [7], Philip [8], Tadikamalla [9], Shah [10], Shah et al. [11], Taleizadeh et al [12], Teng et al. [13], Khanra et al. [14], Chen & Teng [15], Sarkar and Sarkar [16], Ghiami & Williams [17], Kaur et al [18], Tripathi [19, 20].
Wu et al. [21] proposed an economic order quantity model for the retailer where: (i) the supplier provides an upstream trade credit and the retailer also offers a downstream trade credit, (ii) the retailer’s downstream trade credit and the buyer not only increases sales revenue but also opportunity cost and default risk, and (iii) deteriorating products not only deteriorate continuously but also have their expiration dates. Dye [22] pointed out the effect of technology investment on spoilage items. Wee & Widyadana [23] developed a model with stochastic deterioration under preventive maintenance time and rework. Wu et al [24] established a model in which supplier-retailer-customer chain system so that the retailer gets an upstream full trade credit from the supplier whereas offers a downstream partial trade credit to credit-risk customers, the deterioration rate is non-decreasing over time and nearly perfectly close to its expiration. Liu et al. [25] constructed an integrated production inventory and preventive maintenance model, which is characterized by the delay-time concept. Wang et al. [26] proposed an EOQ model for a seller with the following facts: (i) deteriorating products not only deteriorate continuously but also have their maximum lifetime, and (ii) credit period increases not only demand but also default risk. The remainder of the paper is designed as follows. Section 2 defines notation and assumptions. Section 3 derives the mathematical model followed by optimal solution. Section 5 presents numerical example followed by sensitivity analysis. In the last section concluding remarks are discussed.

Notation and Assumptions

Notations

- \(I(t) \) \quad inventory level at any instant ‘\(t \)’
- \(K \) \quad replenishment cost/ order
- \(h \) \quad unit holding cost /unit time
- \(p \) \quad unit selling price, \(p > c \)
- \(c \) \quad purchase cost/ unit
- \(\theta \) \quad constant deterioration rate
- \(u \) \quad preservation technology investment/ unit time to reduce the deterioration rate
- \(\Phi(u) \) \quad proportion of reduced deterioration rate where \(0 \leq \Phi(u) \leq 1 \)
- \(Q \) \quad order quantity
- \(T \) \quad cycle time
- \(R \) \quad sales revenue
- \(C_p \) \quad purchase cost
- \(C_h \) \quad holding cost per cycle time
- \(l_0 \) \quad purchase cost
- \(C_0 \) \quad replenishment cost
- \(Z(p,T) \) \quad total profit/ cycle time
Assumption
1. Demand rate of the item considered as the function of selling price and present time
2. i.e. \(D(p,t) = ap^{-\beta}t \) , where \(a > 0, \beta > 1 \).
3. There is no replenishment during the period under consideration.
4. Lead time in negligible.
5. Shortages are not allowed.
6. Preservation technique is considered.
7. (vi) The model is considered for single item.
8. (vii) The proportion of reduced deterioration rate \(\Phi(u) \) is assumed to be continuous and
9. \(\Phi'(u) > 0, \Phi''(u) < 0 \).

Mathematical Formulation
Let us consider an inventory consists of constant deterioration rate \(\theta \) with price and time sensitive demand rate. The amount of reduced deterioration rate \(\Phi(u) \) exists when the inventory invests the preservation cost \(u \). The rate of change of inventory with respect to time can described as follows:

\[
\frac{dI(t)}{dt} + \theta(1-\Phi(u))I(t) = -\alpha p^{-\beta}t, \quad 0 \leq t \leq T
\]

under the condition \(I(T) = 0 \).

The solution of (1) under the above condition is

\[
I(t) = \frac{\alpha p^{-\beta}}{\theta^2(1-\Phi(u))^2} \left[\theta(1-\Phi(u))^T - \theta(1-\Phi(u))t - \{1-\Phi(u)t\} \right] \quad (2)
\]

Now

\[
Q = I(0) = \frac{\alpha p^{-\beta}}{\theta^2(1-\Phi(u))^2} \left[\theta(1-\Phi(u))^T - \{1-\Phi(u)t\} \right]
\]

Sales revenue: The total revenue in time \(T \) is

\[
R = p \int_0^T (Demand) dt = \frac{\alpha p^{1-\beta}T^2}{2} \quad (4)
\]

Purchasing cost: The total purchasing cost is

\[
C_p = cQ = \frac{c\alpha p^{-\beta}}{\theta^2(1-\Phi(u))^2} \left[\theta(1-\Phi(u))^T - \{1-\Phi(u)t\} \right]
\]

Holding cost: The formulation for inventory cost is

\[
C_h = \frac{h}{\theta^2(1-\Phi(u))^2} \left[\theta(1-\Phi(u))^T - \{1-\Phi(u)t\} \right] - \frac{T}{2} \frac{\theta(1-\Phi(u))^T}{2} \left[\theta(1-\Phi(u))^T - 1 \right]
\]

\[
+C_h = \frac{h}{\theta^2(1-\Phi(u))^2} \left[\theta(1-\Phi(u))^T - \{1-\Phi(u)t\} \right] - T \frac{\theta(1-\Phi(u))^T}{2} - 1 \right]
\]

\[
+C_h = \frac{h}{\theta^2(1-\Phi(u))^2} \left[\theta(1-\Phi(u))^T - \{1-\Phi(u)t\} \right] - T \frac{\theta(1-\Phi(u))^T}{2} - 1 \right]
\]
Preservation cost: The preservation cost is $I_0 = uT$

Replenishment cost: The replenishment cost is $C_0 = K$

The total profit per unit cycle time can be formulated as

$$Z(p, T) = (R - C_p - C_h - I_0 - C_0)/T$$

$$= \frac{\alpha p^{(1-\beta)}T}{2} - \frac{c\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} e^{\theta(1 - \phi(u))T} + 1 \right\} - $$

$$- \frac{h\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} \left\{ e^{\theta(1 - \phi(u))T} - 1 \right\} - T \left\{ \theta(1 - \phi(u)) \frac{T}{2} - 1 \right\} \right\} - u - \frac{K}{T}$$

Now, differentiating (9) partially w.r.t. p and T two times, we get

$$\frac{\partial Z}{\partial p} = \frac{\alpha p^{(1-\beta)}T}{2} + \frac{c\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} e^{\theta(1 - \phi(u))T} + 1 \right\} + $$

$$+ \frac{h\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} \left\{ e^{\theta(1 - \phi(u))T} - 1 \right\} - T \left\{ \theta(1 - \phi(u)) \frac{T}{2} - 1 \right\} \right\}$$

$$\frac{\partial^2 Z}{\partial p^2} = -\frac{\alpha p^{(1-\beta)}T}{2} - \frac{c\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} e^{\theta(1 - \phi(u))T} + 1 \right\} - $$

$$- \frac{h\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} \left\{ e^{\theta(1 - \phi(u))T} - 1 \right\} - T \left\{ \theta(1 - \phi(u)) \frac{T}{2} - 1 \right\} \right\}$$

$$\frac{\partial Z}{\partial T} = \frac{\alpha p^{(1-\beta)}T}{2} + \frac{c\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} e^{\theta(1 - \phi(u))T} + 1 \right\} - c\alpha p^{-\beta} e^{\theta(1 - \phi(u))T}$$

$$- \frac{h\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} \left\{ e^{\theta(1 - \phi(u))T} - 1 \right\} - T \left\{ \theta(1 - \phi(u)) \frac{T}{2} - 1 \right\} \right\}$$

$$- \frac{h\alpha p^{-\beta}}{\theta(1 - \phi(u))} \left\{ e^{\theta(1 - \phi(u))T} - 1 \right\} + \frac{K}{T^2}$$

$$\frac{\partial^2 Z}{\partial p \partial T} = \frac{\alpha p^{(1-\beta)}T}{2} - \frac{c\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} e^{\theta(1 - \phi(u))T} + 1 \right\} +$$

$$+ \frac{h\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} \left\{ e^{\theta(1 - \phi(u))T} - 1 \right\} - T \left\{ \theta(1 - \phi(u)) \frac{T}{2} - 1 \right\} \right\}$$

$$+ c\alpha p^{-\beta} e^{\theta(1 - \phi(u))T} - \frac{h\alpha p^{-\beta}}{T\theta^2 \{1 - \phi(u)\}^2} \left\{ \theta(1 - \phi(u))T - 1 \right\} \left\{ e^{\theta(1 - \phi(u))T} - 1 \right\} -$$
\[
T \left[\frac{\theta (1 - \phi (u))}{T} \frac{T}{2} - 1 \right] + \frac{h \alpha \beta p^{-1+\beta}}{\theta (1 - \phi (u))} \left[e^{\frac{\theta (1 - \phi (u)) T}{2}} - 1 \right] \quad (13)
\]

\[
\frac{\partial^2 Z}{\partial T^2} = -\frac{2c \alpha p^{-\beta}}{T^3 \theta^2 \left(1 - \phi (u) \right)^2} \left[\theta (1 - \phi (u)) T - 1 \right] e^{\frac{\theta (1 - \phi (u)) T}{2}} + 1 \right] - c \alpha p^{-\beta} e^{\frac{\theta (1 - \phi (u)) T}{2}} \left[\theta (1 - \phi (u)) - \frac{1}{T} \right] \]

\[
- \frac{2h \alpha p^{-\beta}}{T^3 \theta^2 \left(1 - \phi (u) \right)^2} \left[\frac{\theta (1 - \phi (u)) T - 1}{\theta (1 - \phi (u))} \right] e^{\frac{\theta (1 - \phi (u)) T}{2}} - 1 \right] - T \left[\theta (1 - \phi (u)) - \frac{T}{2} \right] \]

\[
+ \frac{h \alpha p^{-\beta}}{T \theta (1 - \phi (u))} \left[e^{\frac{\theta (1 - \phi (u)) T}{2}} - 1 \right] - h \alpha p^{-\beta} e^{\frac{\theta (1 - \phi (u)) T}{2}} - \frac{2K}{T^3} \quad (14)
\]

The optimal values of \(p = p^* \) and \(T = T^* \) is obtained by solving \(\frac{\partial Z}{\partial p} = 0 \) and \(\frac{\partial Z}{\partial T} = 0 \), simultaneously, which maximizes \(Z(p, T) = Z(p^*, T^*) \), provided \(\frac{\partial^2 Z}{\partial p^2} < 0 \), \(\frac{\partial^2 Z}{\partial T^2} < 0 \) and

\[
\left(\frac{\partial^2 Z}{\partial p^2} \right) \left(\frac{\partial^2 Z}{\partial T^2} \right) - \left(\frac{\partial^2 Z}{\partial p \partial T} \right)^2 > 0.
\]

\[
\frac{\partial Z}{\partial p} = 0 \Rightarrow (1 - \beta) \frac{p T}{2} + \frac{c \beta}{T \theta^2 \left(1 - \phi (u) \right)^2} \left[\theta (1 - \phi (u)) T - 1 \right] e^{\frac{\theta (1 - \phi (u)) T}{2}} + 1 \right] \]

\[
+ \frac{h \beta}{T \theta^2 \left(1 - \phi (u) \right)^2} \left[\frac{\theta (1 - \phi (u)) T - 1}{\theta (1 - \phi (u))} \right] e^{\frac{\theta (1 - \phi (u)) T}{2}} - 1 \right] - T \left[\theta (1 - \phi (u)) - \frac{T}{2} \right] \right] = 0 \quad (15)
\]

\[
\frac{\partial Z}{\partial T} = 0 \Rightarrow \frac{\alpha p^{1-\beta}}{2} + \frac{c \alpha p^{-\beta}}{T^2 \theta^2 \left(1 - \phi (u) \right)^2} \left[\theta (1 - \phi (u)) T - 1 \right] e^{\frac{\theta (1 - \phi (u)) T}{2}} + 1 \right] - c \alpha p^{-\beta} e^{\frac{\theta (1 - \phi (u)) T}{2}} \]

\[
+ \frac{h \alpha p^{-\beta}}{T^2 \theta^2 \left(1 - \phi (u) \right)^2} \left[\frac{\theta (1 - \phi (u)) T - 1}{\theta (1 - \phi (u))} \right] e^{\frac{\theta (1 - \phi (u)) T}{2}} - 1 \right] - T \left[\theta (1 - \phi (u)) - \frac{T}{2} \right] \right] \]

\[
- \frac{h \alpha p^{-\beta}}{T \theta (1 - \phi (u))} \left[e^{\frac{\theta (1 - \phi (u)) T}{2}} - 1 \right] + \frac{K}{T^2} = 0 \quad (16)
\]

Solving (15) and (16) simultaneously for \(p \) and \(T \), we get optimal values \(p^* \) and \(T^* \).

Numerical Example

Let us consider the reduced deterioration \(f(u) = 1 - e^{-\gamma u} \). The other parameter values of the inventory system are taken as follows: \(\alpha = 500; \beta = 2; \gamma = 0.05; c = 5 / \text{unit}; h = \$1/ \text{unit/unit time}; \quad \theta = 0.01; \ u = 10/ \text{unit time} \) and \(K = 100 \). Substituting these values in (15)
and (16) and solving for p and T, we get $p^* = 100.197$ and $T^* = 57.41$ years and corresponding $Q^* = 103.863$ units and $Z^*(p,T) = $ 59.8799.

Sensitivity Analysis

Sensitivity analysis is the important part of all type business. In any type of business most of the parameters is changed with the change of situation. For example the demand of hot cloths increases in winter season etc. In this section, we check the variation in Q^* and Z^* with the variation in α, h and γ, keeping remaining parameters are same as in numerical example 1.

<table>
<thead>
<tr>
<th>α</th>
<th>p^*</th>
<th>T^*</th>
<th>Q^*</th>
<th>Z^* (in dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>98.6502</td>
<td>56.5433</td>
<td>124.274</td>
<td>74.2069</td>
</tr>
<tr>
<td>700</td>
<td>97.5324</td>
<td>55.9146</td>
<td>144.670</td>
<td>88.5378</td>
</tr>
<tr>
<td>800</td>
<td>96.6865</td>
<td>55.4376</td>
<td>165.057</td>
<td>102.871</td>
</tr>
<tr>
<td>900</td>
<td>96.0238</td>
<td>55.0632</td>
<td>185.438</td>
<td>117.206</td>
</tr>
</tbody>
</table>

Table 1 (b): Variation of Q^* and Z^* with h.

<table>
<thead>
<tr>
<th>h</th>
<th>p^*</th>
<th>T^*</th>
<th>Q^*</th>
<th>Z^* (in dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>163.267</td>
<td>50.3494</td>
<td>29.2186</td>
<td>26.5624</td>
</tr>
<tr>
<td>3</td>
<td>241.034</td>
<td>50.7968</td>
<td>13.6706</td>
<td>14.3745</td>
</tr>
<tr>
<td>4</td>
<td>334.866</td>
<td>53.3749</td>
<td>7.90403</td>
<td>8.05046</td>
</tr>
<tr>
<td>5</td>
<td>444.209</td>
<td>56.7037</td>
<td>5.14007</td>
<td>4.19283</td>
</tr>
</tbody>
</table>

Table 1 (c): Variation of Q^* and Z^* with γ.

<table>
<thead>
<tr>
<th>γ</th>
<th>p^*</th>
<th>T^*</th>
<th>Q^*</th>
<th>Z^* (in dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>100.197</td>
<td>57.4100</td>
<td>103.863</td>
<td>59.8799</td>
</tr>
<tr>
<td>0.10</td>
<td>122.856</td>
<td>74.7955</td>
<td>111.549</td>
<td>64.7635</td>
</tr>
<tr>
<td>0.15</td>
<td>152.267</td>
<td>79.1484</td>
<td>117.739</td>
<td>68.7221</td>
</tr>
<tr>
<td>0.20</td>
<td>190.262</td>
<td>125.869</td>
<td>122.671</td>
<td>71.8999</td>
</tr>
</tbody>
</table>

From the above Tables the following inferences can be made:

(i) Q^* and Z^* both will increase with the increase of α.
(ii) Q^* and Z^* both will decrease with the increase of h.
(iii) Q^* decreases and Z^* increases with the increase of γ.

Conclusion

In this paper, we have developed an inventory model for deteriorating products using preservation technology. Demand rate is considered to be function of time and exponentially decreasing with price. Preservation cost depends on the situation and place of the product. We have shown that there exists unique optimal selling price and optimal cycle time that maximizes the total profit for the fixed preservation technology interest earned. Numerical example is presents to validate the theoretical results. Sensitivity analysis is also provided with the change of important parameters.
References

