
Shanlax

International Journal of Education

https://www.shanlaxjournals.com 49

Error-Grid Framework: A Pedagogical
Approach for Diagnosing Programming
Mistakes and Enhancing Learning
Outcomes in Secondary Education
Canayah Cuniah
University of Technology, Mauritius

 https://orcid.org/0000-0003-4764-3946

Shireen Panchoo
University of Technology, Mauritius

Alain Jaillet
University of Cergy-Pontoise, France

Abstract
Programming in secondary schools is still a difficulty because learners are transitioning to
text-based languages; this is the case of programming. The dropping pass rates in Mauritius
are indicative of endemic conceptual and procedural discontinuities. This study constructs and
tests the Error-Grid Framework, a low-cost classroom intervention that uses errors as a kind
of diagnostic message to inform specific instruction. Content analysis of 30 Grade 11 students
(n=90 handwritten scripts; 2,987 lines) was conducted, providing a code of recurring errors in 11
concepts of core programming. Reliability was studied among four educators using Krippendorff’s
alpha, and effectiveness was studied with the help of a pre/post design with two groups of students
(n=11; n=13). Classroom utility was measured using survey data from 39 teachers across 20
schools. The findings indicated moderate inter-rater reliability (1=0.67; 2=0.64), substantial error
decreases (p<0.001), and continued difficulties in loops, arrays, and functions. Teachers showed
dense usability and diagnostic worthiness in the study. The framework facilitates differentiated
teaching and timely feedback. In the future, this work should be extended to other languages,
where automation is introduced to provide scalability and investigate long-term effects.
Keywords: Programming Education, Error Analysis, Secondary Education, Diagnostic
Tools, Teacher Support, Computational Thinking

Introduction
	 This is because programming has been a marketable skill in the current
technology-oriented society to achieve a career in computing, automation,
data processing, and problem-solving. At the secondary level, it is assumed
that students acquire cognitive thinking skills and logical reasoning, although
learning and teaching are difficult. Novices are forced to learn abstract concepts,
bizarre grammar, and complex thinking, which often leads to frustration and
ineffective performance (Izu & Mirolo, 2024). Programming exams have a
declining pass rate in Mauritius, suggesting knowledge and teaching gaps.
Other languages, such as Scratch and Alice, have made entry more
accessible by simplifying syntax at the expense of seldom helping to
eliminate conceptual mysticism that can occur when using text-based
languages. Beginners have the most difficulty with compilers that identify
syntax errors but not logical errors. Teachers also lack regularised ways
of studying errors and organising particular interventions, which leads
to an increase in the number of mistakes and the development of a lack of
confidence (Demirdag, 2015). While more emphasis is placed on learning

OPEN ACCESS

Manuscript ID:
EDU-2025-14019542

Volume: 14

Issue: 1

Month: December

Year: 2025

P-ISSN: 2320-2653

E-ISSN: 2582-1334

Received: 26.09.2025

Accepted: 01.11.2025

Published Online: 01.12.2025

Citation:
Cuniah, C., Panchoo, S., &
Jaillet, A. (2025). Error-Grid
Framework: A Pedagogical
Approach for Diagnosing
Programming Mistakes
and Enhancing Learning
Outcomes in Secondary
Education. Shanlax
International Journal of
Education, 14(1), 49–58.

DOI:
https://doi.org/10.34293/
education.v14i1.9542

This work is licensed
under a Creative Commons
Attribution-ShareAlike 4.0
International License

Shanlax

International Journal of Education	

https://www.shanlaxjournals.com50

through errors, few tools allow teachers to
systematically record the programming errors
committed in classrooms, interpolate them, and act
on them. This is particularly evident in Mauritius,
where programming is taught primarily through
handwritten scripts. This need is addressed by the
present study by developing and evaluating The
Error-Grid Framework, a simple and inexpensive
framework that allows teachers to transform the
errors made by the students into diagnostic data and
helps learners reflect on reasoning.
	 The Error-Grid Framework described in this
paper is a framework; it is a paper-based diagnostic
tool that could be utilised by teachers to map the
errors of the students within the framework of the
major concepts of programming and allow them to
focus on the aspects of support and think about the
common misconceptions. One attempt to fill this
gap is the Error-Graph Framework, which offers a
cost-effective, accessible, and reliable method of
obtaining a visual depiction of tendencies and taking
action against errors made by teachers.
	 The research question that will be considered
as the focal one and used in the research will be
as follows: How effective can the Error-Grid
Framework be applied to the detection and avoidance
of programming errors among secondary school
learners, and how do educators perceive the potential
of the framework to be implemented in classes and
whether they find it valuable and useful in their
teaching process.
Two hypotheses are proposed.
•	 H1: The use of the Error-Grid Framework will

result in a statistically significant reduction in the
number of program errors.

•	 H2: Educators will report that they have positive
attitudes towards the efficacy, usability, and
applicability of the framework in various
classroom activities.

The study has the following three objectives:
•	 To determine and categorise the general

programmer errors committed by students
in a systematic manner using the Error Grid
Framework.

•	 To establish the consistency of the framework
among the various educators regarding inter-rater
consistency.

•	 To determine the effectiveness of the framework
in eliminating mistakes and helping the student
understand the information with the assistance of
pre-grid analysis and post-grid analysis.

	 This study is intended to be an initial study. It is
founded on a classroom style and has a small number
of participants, and is primarily aimed at Visual
Basic as a target language. Therefore, the findings
are provisional and not conclusive for generalised
use. Nevertheless, it also contributes to the literature
because it demonstrates that the implementation of
error-based pedagogy can be reproduced in the realm
of programming, as well as to teachers who have
limited opportunities most of the time.
	 It is also particularly small-scale: it is not
intended to cover all the problems in the sphere
of programming education but to verify whether
a systematic diagnostic tool might contribute to
raising the emphasis of the teaching strategy and the
learning outcomes. The evidence generated provides
a basis for additional expansions, such as into other
languages, larger cohorts, and the addition of digital
or AI technology to offer scalability.
	 In general, this introduction preconditions the
context of the justification of the creation of the
Error-Grid Framework, defines its objectives, and
locates it in the framework of more comprehensive
discussions about the pedagogy of programming.
This framework will transform programming
education into a stronger, more reflective, and
effective learning experience by applying mistakes
as helpful information rather than as a loss.

Literature Review
Programming Education and Learning
Challenges
	 Although teaching programming in secondary
schools has always been reported to be difficult, the
fact that it involves abstract thinking in addition to
technical accuracy makes it a challenge. Novices must
learn syntax, program structure, and data structure in
addition to familiarising themselves with problem-
solving and design. Unlike other topics that can be
easily learned through memorisation, programming
requires the development of a logic sequence of
instructions, a task that consumes working memory
and requires higher-order thinking. Researchers

Shanlax

International Journal of Education

https://www.shanlaxjournals.com 51

and educators have determined that misconceptions
are one of the major obstacles in research studies:
students are inclined to misunderstand loop execution,
stateful variables, and conditional execution. This
may lead to frustration, loss of motivation, and poor
performance, a trend which has been witnessed in
Mauritius over the past years, where the pass rate in
programming has decreased.
	 According to researchers, these challenges are
clarified by several factors: poor scaffolding, poorly
adjusted pedagogies, and the professionalisation of
teachers themselves. Visual languages like Scratch
and Alice have fewer barriers to entry; however, they
do not prepare text-based languages among learners.
Thus, the shift to textual programming, in contrast to
block-based tools, may be followed by immensely
steep learning curves and conceptual errors that
cannot be detected immediately (Larrain and Kaiser,
2022).

Programming Errors as Learning Opportunities
	 The alternative perspective is error analysis
which does not judge mistakes as failures but as
diagnostic features of student thinking. According
to pedagogical research, through a systematic
investigation of misconceptions, one can determine
the mental models of students and then guide
them on corrective teaching methods. In computer
programming, an error in programming, such
as an undeclared variable, a loop, or a logical
misunderstanding, is found everywhere, regardless
of the country of operation, be it Europe, Asia, or
Africa. The identification of these patterns will help
teachers identify the areas in which students are
expected to perform poorly and develop specific
remedies (Hadjerrouit, 1999; Ihantola & Kihn, 2011;
Demirdag, 2015).
	 Research has also shown that pedagogy rooted
in errors promotes reflection and resilience. By
analyzing their errors, there is a higher chance that
students will narrow down their arguments and build
long-term knowledge. For teachers, error analysis
provides first-hand insight into how students think
and where modifications in teaching are required.
Despite its potential, error analysis has not found
widespread use in classroom practice due to time
limitations, lack of structured tools, and use of

compiler feedback which focuses on syntax and not
on logic.

Current Evaluation Methods in Programming
Education
	 Assessment techniques determine the
effectiveness of students approach to programming.
Compilers, syntax checkers, and online judges are
all real-time feedback systems that make it easy
to correct and facilitate the process of learning.
However normally , they mark superficial errors
without engaging with the underlying conceptual
errors which are the root causes of superficial errors.
More cognitively informative delayed feedback
approaches, such as teacher script review and
post-task reflection, are also labour-intensive and
impossible to scale (Kaufmann et al., 2023).
	 Grover and Pea (2018) in their turn suggested a
systematic study of programming errors, particularly
in the situation of transitioning to the visual text
environment, where errors are more abstract and
conceptually challenging. Yoshizawa and Watanobe
(2018) created automated methods for identifying
logical errors, such as rule-based classifiers or
structure-pattern matching algorithms. These tools
seek to expose falsehoods in real time, although it
can be challenging to supply them with the technical
resources needed to support them, and they are not
readily scalable to resource-constrained classrooms
(Kim and Lee, 2024). Meanwhile, Bloom’s taxonomy
still informs the structure of programming activities,
as verbal learning assessments progress through
memorising syntax, synthesising algorithms, and so
forth. Although Bloom’s framework is successful in
organising assessment, it does not provide a way to
record or analyse student errors.
	
Gaps in the Literature
	 However, gaps remain in the literature. First,
compilers and automated systems are feedback
providers but seldom attract the scope of logical
and conceptual fallacies committed by novices.
Second, current studies in the field of programming
pedagogy are more likely to focus on environmental
or curriculum changes rather than classroom
aids. Third, few articles focus on systematic and
accessible frameworks, especially where digital

Shanlax

International Journal of Education	

https://www.shanlaxjournals.com52

resources are scarce (Lobanov et al., 2021). This
means that teachers are left without any sure means
of categorising the errors, discovering patterns, and
converting the same to actionable information.

Towards an Error-Based Pedagogical Framework
	 These loopholes indicate the necessity of a
systematic, classroom-prepared method that would
render students’ mistakes visible and useful.
This type of framework would help diagnose and
intervene by making mistakes the central pieces of
information. It would enable teachers to see trends
within a cohort and recognise chronic IA problem
areas, such as loops or arrays, and plan differentiated
instruction. This would make students think about
errors and solve problems adaptively.
	 The Error-Grid Framework addresses this
requirement by providing a low-cost paper-
based framework for systematically recording
programming errors over core concepts. It is not new
to automation but offers teachers a very simple and
yet structured diagnostic tool that does not disrupt the
established practice. It satisfies the theoretical and
practical requirements of programming education
by bridging the gap between research on error-based
pedagogy and the realities of classroom settings in
secondary schools.

Methodology
Study Design and Rationale
	 To test the feasibility and usefulness of the Error-
Grid Framework in secondary schools, this study
used a mixed-methods approach. The data sources
were 30 Grade 11 students enrolled in a Computer
Science course at two state secondary schools in
Mauritius. The students were given three curriculum-
based programming tasks, and each was required to
create 90 handwritten programming scripts (2987
lines of Visual Basic codes).
	 The small size of the cohorts and the scheduling
demands of Mauritian secondary schools rendered
the use of a control group impossible. Rather, a
pre- and post-design was selected to compare the
patterns of errors prior to and after the explicit use
of the framework in the classroom setting. These
types of designs are used when an exploratory study
is conducted in educational research, and random

allocation is not feasible, yet internal validity is of
concern (Kaufmann et al., 2023).

Participants
	 The participants were 30 Grade 11 (School
Certificate) students (16-17 years old; 16 boys and
14 girls) studying Computer Science in two state
secondary schools in Mauritius. The schools are based
on the Cambridge International Education (CIE)
computer science curriculum and equip students for
the Higher School Certificate (HSC) examinations.
Participants were identified because of the transition
stage between visual technology and block-based
technology to text-based programming in Visual
Basic. It is always observed that false impressions
are likely to be raised at this stage. The students had
taken at least one year of introductory computing in
Grade 10 and had not yet been taught systematically
to analyse and categorise programming errors. The
involvement was voluntary and endorsed by the
school administration, and parental consent was
obtained as per institutional ethics.

Data Collection and Procedures
The study unfolded across four linked stages:
	 Script Analysis: A total of 2,987 lines of code
(90 scripts) were analysed using content analysis
to determine common mistakes. These were
organised into 11 programming concepts: variables,
conditionals, loops, arrays, and functions. The tests
involved students writing some programs, such as
a grade calculator, a multiplication table generator,
and a menu-based system, which is similar to
standard examination conditions. All programming
was manually coded according to the national
examination patterns. This strategy did not use auto-
completion of the compiler or even the automatic
display of errors, thus depicting a better picture of
the areas in which students are prone to have trouble.
	 Framework Development: The types of errors
were divided into a grid with a structured colour-
coded grid that visualised the error against its
concepts. This constituted the Error-Grid Framework
which could be utilised by teachers to identify
patterns at both the class and individual levels.
	 Test Reliability: Four teachers tested the
framework using the same sample scripts.

Shanlax

International Journal of Education

https://www.shanlaxjournals.com 53

Krippendorff alpha was used to compare their
classifications to determine consistency.
	 Experimental Study: Two groups of students
were allocated programming tasks prior to and after
introducing the framework. The number of errors
was documented and compared using paired t-tests
to determine whether exposure to the error grid
decreased mistakes.
	 Educator Survey: Thirty-nine teachers in 20
schools were given a questionnaire that discussed
their views on the tool’s usefulness, effectiveness,
and classroom usefulness. Open-ended responses
were coded thematically, whereas closed questions
were coded descriptively.

Error Coding and Reliability
	 This study combined both qualitative and
quantitative analyses to assess the framework. In the
initial procedure, we conducted a content analysis
of the handwritten programming of the students to
discover and list common program errors. Based on
this analysis, a diagnostic grid was created which
categorised errors into 11 fundamental programming
concepts. The instructional design used to test
whether the use of the grid minimised student errors
and changes was statistically significant pre-grid/
post-grid.
	 In a test of consistency, the grid was applied
to a sample of scripts by four seasoned educators
operating independently, and inter-rater agreement
was determined. The values obtained were within
the acceptable levels of reliability for educational
instruments. Finally, a questionnaire was created
to collect the teachers’ perceptions regarding the
usefulness of the grid in the classroom, application
ease, and value as a diagnostic tool.

Effectiveness Testing
	 The contribution of the Error-Grid Framework
to the performance of the students was analysed
with the help of paired samples t-tests which were
conducted to compare the number of errors prior to
and after the introduction of the grid.

Table 1 Pre and Post Grid Error Counts and
Effect Sizes

Group N
Pre-mean

(SD)
Post-mean

(SD)
t(df) p

Cohen’s
d

1 11
17.54
(3.12)

8.36
(2.87)

9.12
(10)

<.001 1.22

2 13
11.53
(2.65)

3.54
(1.97)

10.05
(12)

<.001 1.39

	 These findings indicate that programming
error reductions of practical importance (not just
statistically significant differences) were obtained
through exposure to the grid. The magnitude of the
effect indicates that despite the lack of a control
group, the framework has the definite possibility of
enhancing classroom results in the future.

Teacher Survey
	 On behalf of the error-grid framework, we invited
39 computer science teachers from 20 Mauritian
secondary schools to share their experiences with
the error-grid framework. The survey combined
closed-ended questions on a Likert scale (five points,
from strongly disagree to strongly agree) with open-
ended questions. The rating items included questions
regarding how easy the tool was to use, the clarity
of the categories of errors, appropriateness to current
instructional practices, and the general value of
instruction. Open questions helped the teachers
explain how the grid was applied in their classrooms,
what advantages or disadvantages they observed,
and how it could be improved.
	 The Likert answers were analysed descriptively
(frequencies and percentages) to determine overall
acceptance. The open remarks were thematically
codified to appear as common themes such as
usability, diagnostic clarity, and recommendations on
digital or AI-based extensions. Such a combination
of numerical tendencies and narrations by teachers
provided a ground-based image of how the grid
worked in the classroom and what priorities were to
be followed for further development.

Ethical Considerations
	 All participants were informed of the purpose of
the research and signed an informed consent form
prior to participating in the research. The students’
scripts were anonymised by replacing their names

Shanlax

International Journal of Education	

https://www.shanlaxjournals.com54

with codes. The teachers’ involvement was on a
voluntary basis, and the responses were handled
privately. The research was conducted with the
approval of the University of Technology, Mauritius,
and in line with the ethics of carrying out research in
education in the country.

Results	
Categorisation of Programming Errors
	 The 90 student scripts (2,987 lines of code)
were analysed, and 11 programming concepts had
recurring errors. The error grid framework is an
error-coding system. The most common problems
were encountered in arrays, loop constructs, and
functions/procedures, with variables and data types
becoming less problematic. This trend shows that
students usually acquire the ability to learn simple
syntax without any problems with high-level logic
and abstraction.
	 The errors are categorised in Table II, Appendix
A. Complex constructs were shown to create
disproportionate errors, which is why specialised
instructional support is necessary, as confirmed by
visualisations.

Application of the Error-Grid Framework
	 Student scripts annotated by students were
subjected to the Error Grid, generating binary data
on the presence or absence of each type of error.
The process visualised the error trends at the class
and personal levels. The colour-coded structure (red
means errors, green means corrections) allowed for
quick diagnosis in the classroom setting.
	 Figures 1 and 2 of error frequencies with bar
charts show that concepts of conditional statements
(85%), loops (85%), arrays (89%), Functions and
Procedures (85%) continue to create the largest
portion of errors, with the input/output and data
types being less troublesome. Such visual products
justified the usefulness of the grid in clarifying
student problems and provided evidence to teachers
concerning differentiated instruction.

Figure 1 Frequency of Programming Errors
Recorded per Concepts

Implications for Teaching
Findings point to several pedagogical insights:
•	 More specialised instructional design is needed

for higher-level subjects, such as arrays and
control flow. These areas can be consolidated by
using structured practice and activities that have
scaffolds.

•	 Reflection is improved through error awareness.
The framework promotes metacognition
and remedial measures among students by
demonstrating the location of their mistakes.

•	 Teacher planning benefits. The grid provides
an educator with a systematic understanding
so that the lesson can be amended based on the
actual performance of the students as opposed to
speculations.

Reliability of the Framework
	 To determine consistency, four teachers were
asked to use the Error-Grid independently on a set
of scripts. The inter-rater agreement calculated by
Krippendorff’s alpha was 0.67 in total and 0.64 in
categories, indicating moderate reliability. Although
imperfect, these values indicate that the framework
can be used to provide reproducible results among
teachers, which contributes to its use as a diagnostic
tool.

Effectiveness: Pre- and Post-Grid Analysis
	 The pre- and post-tests were conducted on two
groups of students (n=11 and n=13). The findings
showed a statistically significant decrease in errors.
•	 Group 1: The mean errors decreased from 17.54

to 8.36.
•	 Group 2: The mean errors decreased from 11.53

to 3.54.

Shanlax

International Journal of Education

https://www.shanlaxjournals.com 55

	 These means were found to be significant (p <
0.001) by paired-samples t-tests that reported not
only the presence of errors but also an improvement
in these errors when the framework was used.

Educator Perceptions
	 The answers to 39 surveys from 20 schools
provided insight into classroom usage. The
usability of the grid was found to be high, with the
teachers liking its simplicity and compatibility with
current practices. They emphasised its diagnostic
quality, pointing out that it determined recurring
misconceptions better than compiler feedback alone.
Its pedagogical value as a lesson planner, scaffold,
and formative assessment has been valued by many.
Some improvements have been proposed, such as
combining error classes and creating electronic or
automated systems to work effectively. The open-
ended remarks emphasised the importance of the
tool in resource-constrained environments where a
digital feedback system is nonexistent.

Summary of Results
	 The Error-Grid Framework was effective in
leading to the classification of common programming
errors, visualisation of error patterns, and teacher
diagnosis and student reflection. The framework
had moderate inter-rater agreement, as revealed by
reliability analysis and statistically significant error
reduction after the experimental study. The usefulness
of the teacher surveys and their classroom relevance
were further justified, and a means to improve them
was identified. Collectively, these findings indicate
that the framework offers a repeatable, available,
and powerful channel for enhancing programming
learning in high schools.

Discussion and Critical Evaluation
Interpretation of Findings
	 This study demonstrates that the Error-Grid
Framework can serve as a low-cost, practical
diagnostic instrument for secondary programming
learning. The grid makes the areas where students
have the most difficulties apparent through
the systematic classification of errors into 11
programming concepts. The findings we have are
in line with global trends: students tend to master

simple syntax, such as variables and data types, but
continue to struggle with control flow, arrays, and
functions, which involve more abstract thinking and
multi-step reasoning.
	 The best aspect of the framework is its ability to
transform these challenges into practical teaching
considerations. According to teacher reports, the
grid assisted them in identifying misconceptions
that were not considered by the compilers and used
actual student performance to shape the lesson
and not speculation. Students, in turn, became
more conscious of common mistakes and more
introspective about themselves in terms of problem-
solving. The inter-rater reliability was moderate
(Krippendorffs 0.67 0.64), indicating that the grid
can be used with a reasonable degree of consistency
by different teachers.
	 This picture is reinforced by the pre/post analysis.
The error decreases in both groups of learners, large,
statistically significant, 17.54 to 8.36 (d = 1.22) in
Group 1 and 11.53 to 3.54 (d = 1.39) in Group 2.
Such large effect sizes indicate that the impact of the
tool on a classroom should not be considered merely
reliable statistically, but meaningful education-wise,
as it assists novices in producing a cleaner and more
accurate piece of code.

Pedagogical Implications
	 There are a number of practical implications that
can be made to classroom practice:
•	 Attack higher-level subject areas: Loops, arrays,

and control flow are significant pitfalls; therefore,
structured practice and scaffolding of these areas
should be taught.

•	 Promoting error awareness: Demonstrating to
students the location of their errors promotes
metacognitive and resilient learning.

•	 Evidence-based planning: The grid provides
teachers with a straightforward non-tech map of
misconceptions among students, which enables
them to modify lessons and feedback on the spot.

•	 Accessible innovation: Because the tool is paper-
based, it can be applied in resource-constrained
situations where technology to provide automated
feedback cannot be used.

Shanlax

International Journal of Education	

https://www.shanlaxjournals.com56

Limitations
	 The current study was limited to Visual Basic
and therefore may not be applicable to other
languages, such as Python or C++, which present
other challenges. The Error-Grid is a manual tool,
which would involve teachers marking every
script separately, which is manageable in a small
classroom but requires automation in a large one,
and would leverage scaling feedback. The existing
grid also focuses on syntax and logic, which might
ignore more underlying conceptual misconceptions.
Moreover, the study did not include a control group
or prolonged follow-up to make assertions about
enduring learning benefits. Lastly, teacher training
was not assessed, and structured guidance would
enhance uniform usage.

Future Directions
	 Further research in this direction should be
conducted as follows:
•	 Other languages, such as Python and Java, should

be tested to enhance generalisability.
•	 The addition of error classification based on

automation or AI can provide the tool with a larger
scale for classrooms and real-time feedback.

•	 Expanding the number of categories of errors used
to represent more conceptual misconceptions and
the mental models of students, not just syntax and
logic.

•	 Longitudinal and controlled research studies
should be conducted to determine retention and
transfer learning results in the long term.

•	 Teacher training materials and professional
learning modules should be developed to ensure
that the framework is used consistently and
effectively in various school contexts.

Summary
	 The Error-Grid Framework is an effective,
reliable, and practical method for diagnosing
programming errors in secondary schools. It fills the
gap between the pedagogy of errors and the realities
of the classroom by providing teachers with a
systematic approach to the interpretation of mistakes
and students with a way to reflect and improve.
Although constraints are still present, especially
in terms of breadth, scalability, and extended

validation, the results imply that the framework has a
high possibility of being used to make programming
education more resilient and reflective.

Conclusion
	 This research appraised the Error-Grid
Framework as a viable instrument for planning and
minimising errors in programming in secondary
schools. It mapped errors on 11 core concepts and
revealed that novices can cope with simple syntax but
cannot cope with loops, arrays, and functions. The
tool assisted students in minimising mistakes in pre/
post testing and provided teachers with a very cheap
solution to visualise trends and focus instruction.
Inter-rater reliability demonstrates uniformity in
the classroom. The drawbacks of this study are the
use of one language, small sample size, and manual
coding. Future research should be expanded to other
languages, make feedback more automated, and
offer training to teachers.

References
Demirdag, S. (2015). Management of Errors in

Classrooms: Student Mistakes and Teachers.
International Journal of Humanities and
Social Science, 5(7), 77-83.

Grover, S., & Pea, R. (2018). Computational
Thinking: A Competency Whose Time has
Come. In Computer Science Education:
Perspectives on Teaching and Learning in
School. Bloomsbury Publishing.

Hadjerrouit, S. (1999). A constructivist approach
to object-oriented design and programming.
Proceedings of the 4th Annual SIGCSE/
SIGCUE ITiCSE Conference on Innovation
and Technology in Computer Science
Education.

Ihantola, E. M., & Kihn, L. (2011). Threats to validity
and reliability in mixed methods accounting
research. Qualitative Research in Accounting
& Management, 8(1), 39-58.

Izu, C., & Mirolo, C. (2024). Towards comprehensive
assessment of code quality at CS1-level:
Tools, rubrics and refactoring rules. In
2024 IEEE Global Engineering Education
Conference (EDUCON).

Kaufmann, O. T., Larsson, M., & Ryve, A. (2023).
Teachers’ error-handling practices within

Shanlax

International Journal of Education

https://www.shanlaxjournals.com 57

and across lesson phases in the mathematics
classroom. International Journal of Science
and Mathematics Education, 21, 1289-1314.

Kim, D. Y., & Lee, W. J. (2024). Predicting rough
error causes in novice programmers using
cognitive level. In Generative Intelligence
and Intelligent Tutoring Systems, Springer.

Larrain, M., & Kaiser, G. (2022). Interpretation of
Students’ Errors as Part of the Diagnostics
Competence of Pre-service Primary School
Teachers. Journal for Mathematics Didactics,
43, 39-65.

Lobanov, A., Bryksin, T., & Shpilman, A. (2021).
Automatic Classification of Error Types in
Solutions to Programming Assignments at
Online Learning Platform. arXiv.

Yoshizawa, Y., & Watanobe, Y. (2018). Logic Error
Detection Algorithm for Novice Programmers
Based on Structure Pattern and Error Degree.
In 2018 9th International Conference on
Awareness Science and Technology (iCAST).

Appendix A
	 An Extract of the Error-Grid framework reflects
the presence or absence of each error per student
submission, with ‘1’ indicating that the error
occurred at least once, and ‘0’ indicating it was not
present. This binary approach helps identify which
concepts are most frequently affected but does not
reflect how many times each error type occurred.
	 The Table 1 presents a comparative analysis of
programming errors made by Students of Group-1
before and after using the Error-Grid Framework.
It categorises errors based on reference codes,
programming concepts, and descriptions, displaying
the frequency of each mistake for individual
students in both pre-grid and post-grid phases. The
results highlight a reduction in errors after using
the framework, demonstrating its effectiveness
in helping learners identify and correct common
programming mistakes.

Table 2 An Extract of the Error-Grid Framework with Recorded Data
Students group 1 pre-grid

Ref
Code

Concepts Description 1 2 3 4 5 6 7 8 9 10 11
No of

 Errors
V1 Variable No Initialisation of variable 0 1 1 0 1 0 0 0 1 1 1 5

V2 Variable
Use of reserved keyword as

variable
0 1 1 0 1 1 0 0 1 1 1 4

V3 Variable Wrong spelling of Keywords 0 1 1 0 1 0 0 0 1 1 0 6
V4 Variable Space between two words 0 0 1 0 1 0 0 0 1 1 0 7

V5
Variable

Declaration
Keyword ‘Dim’ is missing or

wrongly written
0 1 1 0 1 0 0 0 1 1 0 6

DT1 Data Type
Data type wrongly written: e.g.

Dooble
0 1 1 0 1 1 0 0 1 1 0 5

DT2 Data Type Irrelevant use of data type 0 0 1 0 1 1 0 0 1 1 0 6

DT3
Use of

constant
keyword

The keyword ‘const’ is missing or
wrongly written

0 1 1 0 1 1 1 0 1 1 0 4

Exp1 Expression
Expression wrongly written/

Irrelevant
0 0 1 0 1 0 0 0 1 1 0 7

Exp2 Expression Assignment operator ‘ =’ missing 0 0 1 0 1 1 1 1 1 1 0 4

I/O_1
Output

Statement
Keywords ‘console.writeline’

wrongly written
0 0 1 0 1 1 1 1 1 1 0 4

I/O_2
Input

Statement
Keywords ‘console.readline’

wrongly written
0 0 1 0 1 1 1 1 1 1 0 4

IE1 If-Else ‘Else’ written before ‘If’ 0 0 1 0 1 1 1 0 1 1 0 5

Shanlax

International Journal of Education	

https://www.shanlaxjournals.com58

IE2 If-Else Condition missing 0 0 1 0 1 1 0 0 1 1 0 6
IE3 If-Else Curly braces omitted 0 0 1 0 1 0 0 0 1 1 0 7
IE4 If-Else Wrongly placed statements 0 0 1 0 1 1 0 0 1 1 0 6
IE5 If-Else Irrelevant logical expression 0 0 1 0 0 1 0 0 1 1 0 7
IE6 End-If Missing Endif 0 0 1 1 1 1 1 0 1 1 0 4

Students group 1 post-grid
Ref

Code
Concepts Description 1 2 3 4 5 6 7 8 9 10 11

No of
Errors

V1 Variable No Initialisation of variable 1 1 1 1 1 1 1 0 1 1 0 2

V2 Variable
Use of reserved keyword

as variable
1 1 1 1 1 0 1 0 1 1 0 3

V3 Variable Wrong spelling of Keywords 1 1 1 0 1 0 1 0 1 0 0 5
V4 Variable Space between two words 1 1 1 1 1 1 1 1 1 1 1 0

V5
Variable

Declaration
Keyword ‘Dim’ is missing or

wrongly written
1 1 1 1 1 1 1 0 1 1 0 2

DT1 Data Type
Data type wrongly written: e.g.

Dooble
1 1 1 0 1 0 1 0 1 1 0 4

DT2 Data Type Irrelevant use of data type 1 1 1 0 1 0 1 0 1 1 0 4

DT3
Use of

constant
keyword

The keyword ‘const’ is missing or
wrongly written

1 1 1 1 1 1 1 0 1 1 0 2

Exp1 Expression
Expression wrongly written/

Irrelevant
1 1 1 0 1 0 1 0 1 0 0 5

Exp2 Expression Assignment operator ‘ =’ missing 1 1 1 1 1 0 1 0 1 1 0 3

I/O_1
Output

Statement
Keywords ‘console.writeline’

wrongly written
1 1 1 1 1 1 1 1 1 1 0 1

I/O_2
Input

Statement
Keywords ‘console.readline’

wrongly written
1 1 1 1 1 1 1 0 1 1 1 1

IE1 If-Else ‘Else’ written before ‘If’ 1 1 1 1 1 0 1 0 1 1 0 3
IE2 If-Else Condition missing 1 1 1 1 1 0 1 1 1 1 1 1
IE3 If-Else Curly braces omitted 1 1 1 1 1 1 1 1 1 1 1 0
IE4 If-Else Wrongly placed statements 1 1 1 1 1 1 1 1 1 1 1 0
IE5 If-Else Irrelevant logical expression 1 1 1 1 1 0 1 0 1 1 1 2
IE6 End-If Missing Endif 1 1 1 1 1 1 1 0 1 1 1 1

Author Details
Canayah Cuniah, University of Technology, Mauritius, Email ID: canayah.cuniah@gmail.com

Shireen Panchoo, University of Technology, Mauritius, Email ID: s.panchoo@utm.ac.mu

Alain Jaillet, University of Cergy-Pontoise, France, Email ID: alain.jaillet@cyu.fr

