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Abstract
In this paper introduction about birth and death Poisson process basic result of the markovian 
application in queuing theory used in signal processing, signal transfer from some to passion based 
on the intermediate node, each intermediate node are transformed from signal strength S is directly 
proportional to 1/√p based on the formula using the internal communication a dependent can be 
characterised by the Gilbert model. Two state Markov model signals, distance when signal strength 
is greater the distance should be reduced. Bayesian inference is used, few numerical examples are 
studied.
Keywords: Light-emitting diode (LED), Memoryless property, Birth and death process, 
Gilbert Model, Two-state Markov Chain, Maximum likelihood Estimation procedure (MLE) 
and Bayesian inference

Introduction
 Study state solution of Engineering Application and optimal communication 
system binary data are transmitted by pulsing a laser or light-emitting diode 
(led) that is coupled to an optimal fiber. To transmit a binary one, we turn on the 
eight source for T seconds, while a binary o is represented by turning the source 
for the same period. Hence the signal transmitted by the optimal fiber is a series 
of pluses (or absence of pulses) of duration t seconds, which represents the 
string of binary data to be transmitted. The receiver must convert this optimal 
signal back into a string of binary no’s. It does this photo detector.

 Data input {0,1}→Laser or LED →  → Photo detection electron
   Counter → Decision → {0,1}

Figure 1: Block diagram of an optimal communication system

 The received light waves strike a photoemissive surface, which emits 
electrons in a random manner. While the no. of electrons emitted during a T 
second interval is random and thus needs to be described by a random variable, 
the probability mass function of that random variable changes according to the 
intensity of the light incident on the photoemissive surface during the T second 
internal.
 Therefore, we define a random variable X to be the number of electrons 
counted during the T second interval. We describe this random variable in 
terms of two conditional probability mass function. 
 PX|0(K)=Pr(X=K|0 sent)    (1)
 In can be shown through a quantum mechanical argument that these two 
probability mass function should be those of Poisson variable. When a binary o 
is sent, a relatively low number of electrons are typically observed. Where one 
is sent, a higher number of electrons in typically counted.
 Suppose the two probability mass function.  
    (2)
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   (3)
 In these two parameters, Ro and R1 are interpreted 
as the “average “ number of electrons observed when 
an o is sent, and when a one is sent, respectively. 
Also, it is assumed that R0 < R1, so, when a o is sent 
we tend to observe fewer electrons that when a 1 is 
sent.

Gilbert Burst Model

Figure 2: Gilbert Burst Loss Model

 J.Pandey et. al discussed in the link lose the 
burst model that is the random process consisting 
of Bernoulli’s trail which is the two-state Markov 
model, where ‘P’ is the probability that, given that, 
the correct pocket is delivered, given the current 
one is lost, p+q < 1 if p+q=1. The stationary loss 
probability π is given by the selection.

  (4)
 The probability Pk, q a burst loss of k consecutive 
packets given in the occurrence loss is 

   
      (5)
 Where fk=P(1-q)k-1q. Hence the burst loss 
probability {Pk} follows a geometric distribution 
using maximum likelihood estimator (MLE) of the 
model parameter {p,q} based on the loss burst length 
measurement.

Binary Communication Channel (HAMRS 1980)
  (6)

 Consider, ‘digit’ received correctly (or) 
incorrectly. In a single error correcting Hamming 
code used then e=1, if assume that the transmission 
of the successive bit is independent, the probability 
of word transmission. 

Link Delay Model: Gamma Distribution
 The total time delay for a point to the pocket-to-
pocket transmission can be written as  where n 
is the total number of link, transverse by the pocket, 
and Xi is the time delay incurred on the i’th link, 
which consist of the pocket transmission time and 
queuing delay if the transmission path of a pocket is 
fixed, then the delay j is mainly due to fluctuation of 
the queuing delay introduced. 

Materials and Methods

Figure 3: Block diagram of the paper 

Discrete Markov Process
 The real word process generally produced 
observable outputs that can be characterized as 
a signal. The signals can be discrete, such that 
characters from a finite alphabet qualified vectors 

from a code book. Otherwise continuous for example 
speak samples, temperature measurements. The 
signal source can be stationary such that its statistical 
properties cannot vary with time or non-stationery 
such that the signal properties vary over time. 
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 The data Y = {Y1, Y2…,Yl} are recorded at 
times t1,t2,…tl ϵ {t1,tl} consider a system which may 
be described at any time has to be in one of a set 
of n distinct states s1,s2,…sN of N=Gi Gilbert burst 
model we denote the actual state at time t has q, a full 
probabilistic description of the above systems would 
require specification of the current states (at time 
1) as well as the predecessor states. For the special 
case of first-order Markov chain, this probabilities 
description is truncated to join the current and 
predecessor state.
     (7)

 Which leads to the set of transition properties aij

      (8) 
  
 

With state transition coefficient having the properties 
 aij ≥ 0     (9)
      
     (10)
 The probability can be evaluated as,
 P(0/model) = P(s1,s2/model) 
 = P(s1).P(s2/s1).Ps2.P(s3/s2)   (11)
 This probability can be evaluated as the 
observation sequence,
 P(0/models, qi=si) = aij

d-1(1-aij)=P1(d)  (12)
 The quantity P1(d) is the discrete probability 
of density function duration of in state j. The 
exponential duration density is characteristics of 
the state duration in a Markov chain based on P(d) 
the expected number of observations in a state 
conditioned state ij in the state as,
     (13)

   (14)
  
 0 = HHTTHTHTTTTM
 S = 112212111221
 The model is memory less process, and there is a 
degenerate case of a Markovian model.

Birth Death Process and Queuing System

Figure 4: Birth and Death Model of a Queue

Theroem 1
 For a birth-death queue with arrival rates λi and 
service rates μi, the stationary probabilities pi satisfy.
   (15)

Proof:
 We prove by induction on i that pi-1λi-1 = pi μi for 
i=1, “for an irreducible, positive recurrent continuous 
time Markov chain the state probabilities satisfy,
 limt→∞ pj(t) = pj, or in vector form limt→∞p(t)=p, 
where the limiting state probabilities are the unique 
solution to, 
   (16)
      
   (17)
 Just as for the discrete-time chain, the limiting 
state probability pj is the fraction of time the system 
spends in state j over the sample path of the process. 
Since rj = -vj and rij = qij has as nice interpretation 
when we write,
    (18)

 On the left side, we have the product of pj, the 
fraction of time spent in stat j, and vj the transition 
rate out of state j. That is, the left side is the average 
rate of transition out of j. Similarly on the right side 
pjqij is the average rate of transitions from the state I 
into state j. In short, the limiting state probabilities 
balance the average transition rate into state j against 
the average transition rate out of state j. Because this 
is balance of rates, pij as well as on the expected time 
1vi that the system says in state i before the transition, 
p0λ0 = p1 μ1 assuming pi-1 λi-1 = pj μi its requires,
 pi( λi+ μi)= pi-1 λi-1+ pi+1 μi+1

 From this equation the assumption that  
pi-1 λi-1= pi μi implies pi λi= pi+1 μi+1, completing this 
induction. For birth death process, Transient and 
Recurrent states for a countable infinite Markov 
chain, state i is recurrent if P[Vii]=1; otherwise state 
i is transient.

Theorem 2
 Consider an irreducible a periodic, finite Markov 
chain with transition probabilities {pij} and stationary 
probabilities {πi}. For any partition of the state space 
into disjoint subsets S & S|
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 For discrete-time queues in that it says that the 
average rate of transitions rate state i-1 to state i 
must equal the average rate of transitions from the 
state I to state i-1. It follows from this the theorem 
that stationary probability of birth-death queue 
has particularly simple from. At the receiver, we 
count the number of electrons emitted during each 
T second interval and then must decide whether a 
“0” or “1” was sent during each interval. Suppose 
that during a certain bit interval, it is observed that k 
electrons are emitted. A logical decision rule would 
be to calculate Pr (0 sent /X=k) and Pr (1 sent /X=k) 
and choose according to whichever is larger. That 
is, we calculate the posterior probability of each 
bit being sent, given the observation of the number 
of electrons emitted and choose the data bit, which 
maximizes the a posteriori probability. This is 
referred to as maximum a post. 

Conclusion
 Considering a local area computer network, 
a cluster of nodes connected by a common 
communication line. Suppose for simplicity that 
nodes occasionally need to transmit a message 
of some fixed length referred to as pocket. Also, 
assume that the nodes are synchronized so that time 
is divided into slacks, each of which is sufficiently 
long to support one pocket (slotted aloce). Message 
(pockets) are assumed to arrive according to Poisson 
process. Assume there are n nodes the pocket arrival 
assumed to be λ/n, so that the total arrival rate is 
each node is assune to be λ/n, So that the total arrival 
rate of pocket is fixed at λ packet / slacks. In slatted, 
allow every slat.
 During each slot, one of the three events can 
occur.
• No node attempts to transform pockets, in which 

one of the slots is to be ideal.
• Exactly one node is attempt to transmit a 

package in which case transmission is successful 
more one node attempts to transmit a will need 
to retransmit a pocket, but if they all retransmit 
during the next transmit, they will continue 
communicating to collide and the pockets 
never the successfully transmitted. All nodes 
involved in pollution of said to be backlogged 
until the pocket is successfully transmitted in the 

allocated protocol each backlogged node chosen 
to transmit during the next slot.
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