Existence and Non - Existence of SML for Star Related Graphs

OPEN ACCESS

Volume: 10

Special Issue: 1

Month: August

Year: 2022

P-ISSN: 2321-788X

E-ISSN: 2582-0397

Received: 14.07.2022

Accepted: 24.08.2022

Published: 30.08.2022

Citation:

Radha, M., and F. Silviy a.
"Existence and Non -
Existence of SML for Star
Related Graphs." Shanlax
International Journal of Arts, Science and Humanities, vol. 10, no. S1, 2022, pp. 66-75.

DOI:
https://doi.org/10.34293/
sijash.v10iS1.5258

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

M. Radha

M.Phil. Scholar in Mathematics (PT), Reg. Number: 1972 15EP103

Mother Teresa Womens University, Kodaikanal

Dr. F. Sil viya, M.Sc., M.Phil., Ph.D.,

Assistant Professor and Head, Departm ent of Mathematics Gonzaga College of Arts \& Science for Women, Krishnagiri

Graphs in this chapter are simple. Terms here are used in the sense of Harary. The SML was focused as assignment of label to the vertices $\mathrm{x} \in \mathrm{V}$ with distinct elements $\mathrm{f}(\mathrm{x})$ froml, 2, .., p in such a way that when the edge $e=u v$ is labeled with $\frac{\mathrm{f}(\alpha)+\mathrm{f}(\beta)}{2} \mathrm{iff}(\alpha)+\mathrm{f}(\beta)$ is even and $\frac{f(\alpha)+f(\beta)+1}{2}$ if $f(\alpha)+f(\beta)$ is odd then the resulting edges get distinct labels from the set $\{2,3, \ldots, p\}$. In [2], we proved that if $\mathrm{n}_{1} \leq \mathrm{n}_{2}<\mathrm{n}_{3}$, the three starK $1_{1, n_{1}} \cup K_{1, n_{2}} \cup K_{1, n_{3}}$ is a SMGif $\left|\mathrm{n}_{2}-\mathrm{n}_{3}\right|=4+$ n_{1} for $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$ are positive integers; also, $\mathrm{n}_{1} \leq \mathrm{n}_{2}<\mathrm{n}_{3}$, the three $\operatorname{star} K_{n_{1}} \cup$ $K_{n_{2}} \cup K_{n_{3}}$ is not aSMG if $\left|\mathrm{n}_{2}-\mathrm{n}_{3}\right|>4+\mathrm{n}_{1}$ for $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$ are positive integers.; the graph $K_{1, n_{1}} \cup K_{1, n_{1}} \cup K_{1, n_{2}} \cup K_{1, n_{3}}$ is a SMG if $\left|\mathrm{n}_{2}-\mathrm{n}_{3}\right|=$ $4+\mathrm{n}_{1}$ for $\mathrm{n}_{1}=2,3,4, \ldots ; \mathrm{n}_{2}=2,3,4, \ldots ; \mathrm{n}_{3}=2 \mathrm{n}_{1}+\mathrm{n}_{2}+4$ and $\mathrm{n}_{1} \leq \mathrm{n}_{2}<\mathrm{n}_{3}$; the $\operatorname{graph} K_{1, n_{1}} \cup K_{1, n_{1}} \cup K_{1, n_{2}} \cup K_{1, n_{3}}$ is not a SMG if $\mid \mathrm{n}_{2}-$ $\mathrm{n}_{3} \mid>4+\mathrm{n}_{1}$ for $\mathrm{n}_{1}=2,3,4, \ldots ; \mathrm{n}_{2}=2,3,4, \ldots ; \mathrm{n}_{3}=2 \mathrm{n}_{1}+\mathrm{n}_{2}+5$ and $\mathrm{n}_{1} \leq \mathrm{n}_{2}<\mathrm{n}_{3}$; the four star $K_{1,1} \cup K_{1,1} \cup K_{1, n_{2}} \cup K_{1, n_{3}}$ is a SMG if $\left|\mathrm{n}_{2}-\mathrm{n}_{3}\right|$ $=7$ forn $_{2}=1,2,3, \ldots ; n_{3}=n_{2}+7$ and $1 \leq n_{2}<n_{3}$ and the four star $K_{1,1} \cup K_{1,1} \cup K_{1, n_{2}} \cup K_{1, n_{3}}$ is not a SMG if $\left|\mathrm{n}_{2}-\mathrm{n}_{3}\right|>7$ forn $_{2}=1,2,3$, . .; $\mathrm{n}_{3} \geq \mathrm{n}_{2}+8$ and $1 \leq \mathrm{n}_{2}<\mathrm{n}_{3}$. In [3], the condition for a graph to be skole m mean is that $\mathrm{p} \geq \mathrm{q}+1$.

Definition: Graph

A graph $G=(V(G), E(G))$, consists of two finite sets, $V(G)$, the vertex set of the graph, often denoted by just V , which is non-empty sets of elementscalled vertices, $\mathrm{E}(\mathrm{G})$, the edges set of the graph, often denoted by just E , which is possibly an empty set of element called edges.

A graph G with five vertices and seven edges.

$$
\begin{aligned}
& \mathrm{V}(\mathrm{G})=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5},\right\} \\
& \mathrm{E}(\mathrm{G})=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{7,}\right\}
\end{aligned}
$$

Definition: Empty Graph

An empty graph is graph with no edges.

In the graph empty graph with two vertices.

Definition

A graph $G=(V, E)$ with p vertices and q edges is said to be a SMG if there exists a function f from the vertex set of G to $\{1,2, \ldots, p\}$ such that the induced map f^{*} from the edge set of G to $\{2,3, \ldots$, p \} defined by $\mathrm{f}^{*}(\mathrm{e}=\alpha \beta)=\left\{\begin{array}{l}\frac{f(\alpha)+f(\beta)}{2} \text { if } \mathrm{f}(\alpha)+\mathrm{f}(\beta) \text { is even } \\ \frac{f(\alpha)+f(\beta)+1}{2} \text { if } \mathrm{f}(\alpha)+\mathrm{f}(\beta) \text { is odd, }\end{array}\right.$ the resulting edges get distinct labels from the set $\{2$, $3, \ldots, p\}$.

Some Results on Skolem Me an Graphs

In this chapter, we prove that the three stars $\mathrm{K} 1, \ell \cup \mathrm{~K} 1, \mathrm{p} \cup \mathrm{K} 1, \mathrm{q}$ is a skolem mean graph if and on ℓ y if $|\mathrm{p}-\mathrm{q}| \leq 4+\ell$ where $\ell=1,2,3, \ldots$. And the four stars $\mathrm{K} 1, \ell \cup \mathrm{~K} 1, \ell \cup \mathrm{~K} 1, \mathrm{p} \cup \mathrm{K} 1, \mathrm{q}$ is a skolem mean graph if and on ℓ y if $|p-q| \leq 4+2 \ell$ where $\ell=$ $2,3,4 \ldots$. Also, we prove that the five stars $\mathrm{K} 1, \ell \cup$ $\mathrm{k} 1, \ell \cup \mathrm{k} 1, \ell \cup \mathrm{k} 1, \mathrm{p} \cup \mathrm{k} 1, \mathrm{q}$ is a skolem mean graph if and on ℓ y if $|\mathrm{p}-\mathrm{q}| \leq 4+3 \ell$ where $\ell=2,3,4, \ldots$. Finally we give the conjecture that the t stars $t(k 1, \ell)$ $\cup \mathrm{k} 1, \mathrm{p} \cup \mathrm{k} 1, \mathrm{q}$ is a skolem mean graph if and only if $\mathrm{p}-\mathrm{q} \mid \leq 4+\mathrm{t} \ell$ where $\mathrm{t}=1,2,3,4 \ldots$.

Theorem

$\mathrm{K} 1, \ell \cup \mathrm{~K} 1, \mathrm{p} \cup \mathrm{K} 1, \mathrm{q}$ is a skolem mean graph if \mid $\mathrm{p}-\mathrm{q} \mid \leq 4+\ell$ where $\ell=1,2,3, \ldots$.

PROOF : Consider the graph $\mathrm{K} 1, \ell \cup \mathrm{~K} 1, \mathrm{p} \cup$ $\mathrm{K} 1, \mathrm{q}=\mathrm{K} 1, \ell \cup \mathrm{~K} 1,(\ell, \ell+1, \ell+2, \ell+3, \ldots.) \cup \mathrm{K} 1$, $(2 \ell+4,2 \ell+5,2 \ell+6, \ldots)$ where $\mathrm{p}=\ell, \ell+1, \ell+2, \ell$ $+3, \ldots, q=2 \ell+4,2 \ell+5,2 \ell+6, \ldots$ and $\ell=1,2,3, \ldots$ $. K 1, \ell \cup K 1, p \cup K 1, q=K 1, \ell \cup K 1, \ell+t-1 \cup K 1,2 \ell$ $+t+3$ where $\ell=1,2,3, \ldots$ and $t=1,2,3, \ldots$.

Case 1: Let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m}$.

Consider the graph $\mathrm{K} 1, \ell \cup \mathrm{~K} 1, \mathrm{p} \cup \mathrm{K} 1, \mathrm{q}=\mathrm{K} 1, \mathrm{~m}$ $\cup \mathrm{K} 1,2 \mathrm{~m}-1 \cup \mathrm{~K} 1,3 \mathrm{~m}+3$. let $\{\mathrm{u}\}$,
$\{$ ui: $1 \leq \mathrm{i} \leq \mathrm{m}\},\{\mathrm{v}\},\{\mathrm{vj}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}-1\}$ and $\{$ $\mathrm{w}\},\{\mathrm{wk}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+3\}$ be the vertices of $\mathrm{K} 1, \mathrm{~m}$, $\mathrm{K} 1,2 \mathrm{~m}-1$ and $\mathrm{K} 1,3 \mathrm{~m}+3$ respectively. Then $\mathrm{K} 1, \mathrm{~m}$ $\cup \mathrm{K} 1,2 \mathrm{~m}-1 \cup \mathrm{~K} 1,3 \mathrm{~m}+3$ has $6 \mathrm{~m}+5$ vertices and $6 m+2$ edges.

Define f: V $(\mathrm{K} 1, \mathrm{~m} \cup \mathrm{~K} 1,2 \mathrm{~m}-1 \cup \mathrm{~K} 1,3 \mathrm{~m}+3) \rightarrow$ $\{1,2,3, \ldots, 6 m+5\}$ by $f(w)=6 m+4, f(w k)=2 k$, $1 \leq \mathrm{k} \leq 3 \mathrm{~m}+1$ and $\mathrm{f}(\mathrm{w} 3 \mathrm{~m}+2)=6 \mathrm{~m}+3$, $\mathrm{f}(\mathrm{w} 3 \mathrm{~m}+3$ $)=6 \mathrm{~m}+5 \mathrm{f}(\mathrm{f})=3, \mathrm{f}(\mathrm{vj})=2 \mathrm{~m}+2 \mathrm{j}+3,1 \leq \mathrm{j} \leq$ $2 \mathrm{~m}-1$ and $\mathrm{f}(\mathrm{u})=1, \mathrm{f}(\mathrm{ui})=\mathrm{m}+2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{m}$. The edge label of $w w k$ is $3 \mathrm{~m}+\mathrm{k}+2,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+$ $1,6 m+4$ and $6 m+5$. The edge label of $v v j$ is $m+j$ $+3,1 \leq j \leq 2 m-1$ and the edge label of uui is $\frac{m+2 i}{2}$, $1 \leq \mathrm{i} \leq \mathrm{m}$.

Hence the induced edge labels are $6 \mathrm{~m}+2$ distinct edges.

The Skolem mean labeling of $\mathrm{K} 1, \mathrm{~m} \cup \mathrm{~K} 1$, $2 \mathrm{~m}-1 \cup \mathrm{~K} 1,3 \mathrm{~m}+3$ are illustrated in Fig.2.0, Fig.2.1 and Fig. 2.2 respectively.

Consider the graph $\mathrm{G}=\mathrm{K} 1,4 \cup \mathrm{~K} 1,7 \cup \mathrm{~K} 1,15$ where $m=4$.

Then $|\mathrm{v}|=\mathrm{p}=29$ and $|\mathrm{E}|=\mathrm{q}=26$.

$K_{1,15}$

$\mathbf{K}_{1,7}$

$K_{1,4}$
Therefore, all the edge labels are distinct in the graph.

Therefore, the graph $G=K_{1,4} \cup K_{1,7} \cup K_{1,15}$ is a skolem mean graph.

Hence the graph $\mathrm{K}_{1, \mathrm{~m}} \cup \mathrm{~K}_{1,2 \mathrm{~m}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+3}$ is a skolem mean graph.

Case 2: let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m}+\mathbf{1}$.
Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}+1} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+6}$. let $\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+1\right\},\{\mathrm{v}\},\{$ $\left.\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+1\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+6\right\}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}+1}, \mathrm{~K}_{1,2 \mathrm{~m}+1}$ and $\mathrm{K}_{1,3 \mathrm{~m}+6}$ respectively.Then $\mathrm{K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+6}$ has 6 m +11 vertices and $6 \mathrm{~m}+8$ edges.

Definef: $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+6}\right) \rightarrow\{1,2$, $3, \ldots, 6 \mathrm{~m}+11\}$ by $\mathrm{f}(\mathrm{w})=6 \mathrm{~m}+10, \mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=2 \mathrm{k}, 1 \leq$ $\mathrm{k} \leq 3 \mathrm{~m}+4$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+5}\right)=6 \mathrm{~m}+9, \mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+6}\right)=$ $6 \mathrm{~m}+11 . \mathrm{f}(\mathrm{v})=3, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{~m}+2 \mathrm{j}+5,1 \leq \mathrm{j} \leq 2 \mathrm{~m}+1$ and $f(u)=1, f\left(u_{i}\right)=m+2 i-1,1 \leq i \leq m+1$. The edge label of ww_{k} is $3 \mathrm{~m}+\mathrm{k}+5,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+4,6 \mathrm{~m}+$ 10 and $6 \mathrm{~m}+11$. The edge label of vv_{j} is $\mathrm{m}+\mathrm{j}+4,1 \leq$
$\mathrm{j} \leq 2 \mathrm{~m}+1$ and the edge label of uu_{i} is $\frac{\mathrm{m}+2 \mathrm{i}}{2}, 1 \leq \mathrm{i} \leq$ $\mathrm{m}+1$.

Hence the induced edge labels are $6 \mathrm{~m}+8$ distinct edges.

The Skolem mean labeling of $\mathrm{K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup$ $\mathrm{K}_{1,3 \mathrm{~m}+6}$ are illustrated in Fig.2.3, Fig.2.4 and Fig.2.5 respectively.

Consider the graph $G=K_{1,5} \cup K_{1,9} \cup K_{1,18}$ where $\mathrm{m}=4$.

Then $|\mathrm{V}|=\mathrm{p}=35$ and $|\mathrm{E}|=\mathrm{q}=32$.

$K_{1,18}$

$\mathbf{K}_{1,9}$

$K_{1,5}$

Therefore, all the edge labels are distinct in the graph.

Therefore, the graph $G=K_{1,5} \cup \mathrm{~K}_{1,9} \cup \mathrm{~K}_{1,18}$ is a skolem mean graph.

Hence the graph $\mathrm{K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+6}$ is a skolem mean graph.

Case 3: let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m}+\mathbf{2}$.

Consider the graph $\mathrm{K}_{1, \mathrm{l}} \cup \mathrm{K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}+2} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+9}$.let $\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+2\right\},\{\mathrm{v}\}$, $\left\{\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+3\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+9\right.$ \} be the vertices of $\mathrm{K}_{1, \mathrm{~m}+2}, \mathrm{~K}_{1,2 \mathrm{~m}+3}$ and $\mathrm{K}_{1,3 \mathrm{~m}+9}$ respectively. Then $\mathrm{K}_{1, \mathrm{~m}+2} \cup \mathrm{~K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+9}$ has $6 \mathrm{~m}+17$ vert ices and $6 \mathrm{~m}+14$ edges.

Define f: V $\left(\mathrm{K}_{1, \mathrm{~m}+2} \cup \mathrm{~K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+9}\right) \rightarrow\{1$, $2,3, \ldots, 6 \mathrm{~m}+17\}$ byf $(\mathrm{w})=6 \mathrm{~m}+16, \mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=2 \mathrm{k}, 1 \leq$ $\mathrm{k} \leq 3 \mathrm{~m}+7$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+8}\right)=6 \mathrm{~m}+15, \mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+9}\right)=6 \mathrm{~m}$ +17 . $\mathrm{f}(\mathrm{v})=3$, $\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{~m}+2 \mathrm{j}+7,1 \leq \mathrm{j} \leq 2 \mathrm{~m}+3$ and $\mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{m}+2$. The edge label of ww_{k} is $3 \mathrm{~m}+\mathrm{k}+8,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+7,6 \mathrm{~m}$ +16 and $6 m+17$. The edge label of ${v v_{j}}$ is $m+j+5$, $1 \leq \mathrm{j} \leq 2 \mathrm{~m}+3$ and the edge label of un_{i} is $\frac{\mathrm{m}+2 \mathrm{i}}{2}, 1$ $\leq \mathrm{i} \leq \mathrm{m}+2$.

Hence the induced edge labels are $6 m+14$ distinct edges.

The Skolem mean labeling of $\mathrm{K}_{1, \mathrm{~m}+2} \cup \mathrm{~K}_{1,2 \mathrm{~m}+3} \cup$ $\mathrm{K}_{1,3 \mathrm{~m}+9}$ are illustrated in Fig.3.6, Fig.3.7 and Fig.3.8 respectively.

Consider the graph $\mathrm{G}=\mathrm{K}_{1,6} \cup \mathrm{~K}_{1,11} \cup \mathrm{~K}_{1,21}$ where $\mathrm{m}=4$.

Then $|\mathrm{v}|=\mathrm{p}=41$ and $|\mathrm{E}|=\mathrm{q}=38$.

$\mathrm{K}_{1,21}$

K1,11

K1,6

Therefore, all the edge labels are distinct in the graph.Therefore, the graph $\mathrm{G}=\mathrm{K}_{1,6} \cup \mathrm{~K}_{1,11} \cup \mathrm{~K}_{1,21}$ is a skolem mean graph.Hence the graph $\mathrm{K}_{1, \mathrm{~m}+2} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+9}$ is a skolem mean graph.

Case 4: let $\ell=\mathbf{t}=\mathbf{m}+3$.
Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}+3} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+12}$. let $\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+3\right\},\{\mathrm{v}\}$, $\left\{\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+5\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+12\right\}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}+3}, \mathrm{~K}_{1,2 \mathrm{~m}+5}$ and $\mathrm{K}_{1,3 \mathrm{~m}+12}$ respectively.Then $\mathrm{K}_{1, \mathrm{~m}+3} \cup \mathrm{~K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+12}$ has $6 m+23$ vertices and $6 m+20$ edges.

Define f: V $\left(\mathrm{K}_{1, \mathrm{~m}+3} \cup \mathrm{~K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+12}\right) \rightarrow\{1$, $2,3, \ldots, 6 m+23\} \operatorname{byf}(w)=6 m+22, f\left(w_{k}\right)=2 k$, $1 \leq \mathrm{k} \leq 3 \mathrm{~m}+10$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+11}\right)=6 \mathrm{~m}+21, \mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+12}\right.$ $)=6 m+23 . f(v)=3, f\left(v_{j}\right)=2 m+2 j+9,1 \leq j \leq$ $2 \mathrm{~m}+5$ and $\mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{m}$ +3 . The edge label of ww_{k} is $3 \mathrm{~m}+\mathrm{k}+11,1 \leq \mathrm{k} \leq$ $3 m+10,6 m+22$ and $6 m+23$. The edge label of $v v_{j}$
is $m+j+6,1 \leq j \leq 2 m+5$ and the edge label of ${u u_{i}}_{i}$ is $\frac{\mathrm{m}+2 \mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{m}+3$.

Hence the induced edge labels are $6 m+20$ distinct edges.

The Skolem mean labeling of $\mathrm{K}_{1, \mathrm{~m}+3} \cup \mathrm{~K}_{1,2 \mathrm{~m}+5} \cup$ $\mathrm{K}_{1,3 \mathrm{~m}+12}$ are illustrated in Fig.3.9, Fig.3.10 and Fig.3.11 respectively.

Consider the graph $\mathrm{G}=\mathrm{K}_{1,7} \cup \mathrm{~K}_{1,13} \cup \mathrm{~K}_{1,24}$ where $\mathrm{m}=4$.

Then $|\mathrm{v}|=\mathrm{p}=47$ and $|\mathrm{E}|=\mathrm{q}=44$.

$\mathbf{K}_{1,13}$

$\mathbf{K}_{1,7}$
Therefore, all the edge labels are distinct in the graph. Therefore, the graph $G=K_{1,7} \cup K_{1,13} \cup K_{1,24}$ is
a skolem mean graph. Hence the graph $\mathrm{K}_{1, \mathrm{~m}+3} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+12}$ is a skolem mean graph.

Case 5: let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m}+\mathbf{r}$.
Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}+\mathrm{r}} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+2 \mathrm{r}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+3 \mathrm{r}+3}$ Where $\mathrm{r}=0,1,2,3, \ldots$ let $\{\mathrm{u}\}$, $\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+\mathrm{r}\right\},\{\mathrm{v}\},\left\{\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+2 \mathrm{r}-1\right\}$ and $\{\mathrm{w}$ $\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+3 \mathrm{r}+3\right\}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}+\mathrm{r}}$, $\mathrm{K}_{1,2 \mathrm{~m}+2 \mathrm{r}-1}$ and $\mathrm{K}_{1,3 \mathrm{~m}+3 \mathrm{r}+3}$ respectively. Then $\mathrm{K}_{1, \mathrm{~m}+\mathrm{r}} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+2 \mathrm{r}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+3 \mathrm{r}+3}$ has $6 \mathrm{~m}+6 \mathrm{r}+5$ vertices and $6 m+6 r+2$ edges.

Definef: V $\left(\mathrm{K}_{1, \mathrm{~m}+\mathrm{r}} \cup \mathrm{K}_{1,2 \mathrm{~m}+2 \mathrm{r}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+3 \mathrm{r}+3}\right) \rightarrow\{$ $1,2,3, \ldots, 6 m+6 r+5\}$ by $f(w)=6 m+6 r+4, f($ $\left.\mathrm{w}_{\mathrm{k}}\right)=2 \mathrm{k}, 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+3 \mathrm{r}+1$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+3 \mathrm{r}+2}\right)=6 \mathrm{~m}+$ $6 \mathrm{r}+3, \mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+3 \mathrm{r}+3}\right)=6 \mathrm{~m}+6 \mathrm{r}+5 \mathrm{f}(\mathrm{v})=3, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=$ $2 \mathrm{~m}+2 \mathrm{j}+2 \mathrm{r}+3,1 \leq \mathrm{j} \leq 2 \mathrm{~m}+2 \mathrm{r}-1$ and $\mathrm{f}(\mathrm{u})=1, \mathrm{f}($ $\left.u_{i}\right)=m+2 i-1,1 \leq i \leq m+r$. The edge label of ww_{k} is $3 \mathrm{~m}+3 \mathrm{r}+\mathrm{k}+2,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+3 \mathrm{r}+1,6 \mathrm{~m}+6 \mathrm{r}+4$ and $6 m+6 r+5$. The edge label of $v v_{j}$ is $m+j+r+$ $3,1 \leq \mathrm{j} \leq 2 \mathrm{~m}+2 \mathrm{r}-1$ and the edge label of uu_{i} is $\frac{\mathrm{m}+2 \mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{m}+\mathrm{r}$. Hence the induced edge labels are $6 \mathrm{~m}+6 \mathrm{r}+2$ distinct edges. Conversely, suppose that $K_{1, \ell} \cup K_{1 p} \cup K_{1, q}$ is a skolem mean graph if $\mid p-q$ $\mid>4+\ell$ Where $\ell=1,2,3, \ldots$.

Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1}$, $(\ell, \ell+1, \ell+2, \ell+3, \ldots.) \cup \mathrm{K}_{1,(2 \ell+5,2 \ell+6,2 \ell+7, \ldots)}$ where $\mathrm{p}=\ell$, ℓ $+1, \ell+2, \ell+3, \ldots, q=2 \ell+5,2 \ell+6,2 \ell+7, \ldots$ and $\ell=$ $1,2,3, \ldots . K_{1, \ell} \cup K_{1, p} \cup K_{1, q}=K_{1, \ell} \cup K_{1, \ell+\mathrm{t}-1} \cup \mathrm{~K}_{1,2 \ell+}$ $\mathrm{t}+4$ where $\ell=1,2,3, \ldots$ and $\mathrm{t}=1,2,3 \ldots$.

Case 6: let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m}$.

Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+4}$. let $\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\},\{\mathrm{v}\}$, $\{$ $\left.\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}-1\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+4\right\}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}}, \mathrm{~K}_{1,2 \mathrm{~m}-1}$ and $\mathrm{K}_{1,3 \mathrm{~m}+4}$ respectively. Then $\mathrm{K}_{1, \mathrm{~m}} \cup \mathrm{~K}_{1,2 \mathrm{~m}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+4}$ has $6 \mathrm{~m}+$ 6 vertices and $6 m+3$ edges.

Define f: V $\left(\mathrm{K}_{1, \mathrm{~m}} \cup \mathrm{~K}_{1,2 \mathrm{~m}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+4}\right) \rightarrow\{1,2$, $3, \ldots, 6 \mathrm{~m}+6\}$ by $\mathrm{f}(\mathrm{w})=6 \mathrm{~m}+5, \mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=2 \mathrm{k}-1,1 \leq$ $\mathrm{k} \leq 3 \mathrm{~m}+2$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+3}\right)=6 \mathrm{~m}+4, \mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+4}\right)=6 \mathrm{~m}+$ 6. $\mathrm{f}(\mathrm{v})=4, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{~m}+2 \mathrm{j}+4,1 \leq \mathrm{j} \leq 2 \mathrm{~m}-1$ and $\mathrm{f}(\mathrm{u})=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}$. The edge label of Ww_{k} is $3 \mathrm{~m}+\mathrm{k}+2,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+2,6 \mathrm{~m}+5$ and 6 m
+6 . The edge label of vv_{j} is $\mathrm{m}+\mathrm{j}+4,1 \leq \mathrm{j} \leq 2 \mathrm{~m}-1$ and the edge label of $u u_{i}$ is $\frac{m+2 i+2}{2}, 1 \leq i \leq m$.

Hence the induced edge labels $6 \mathrm{~m}+3$ are not receiving distinct edges.The Skolem mean labeling of $\mathrm{K}_{1, \mathrm{~m}} \cup \mathrm{~K}_{1,2 \mathrm{~m}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+4}$ are illustrated in Fig.2.12, Fig.2.13 and Fig.2.14 respectively.

Consider the graph $\mathrm{G}=\mathrm{K}_{1,4} \cup \mathrm{~K}_{1,7} \cup \mathrm{~K}_{1,16}$ where $\mathrm{m}=4$.

Then $|\mathrm{V}|=\mathrm{p}=30$ and $|\mathrm{E}|=\mathrm{q}=27$.

Therefore, the edge label of (29,1) is 15 in $\mathrm{K}_{1,16}$ and the edge label of $(4,26)$ is 15 in $\mathrm{K}_{1,7}$.

Therefore, the two edge labels are same in the graph.

Therefore, the edge labels are not distinct in the graph.

Therefore, the graph $G=K_{1,4} \cup K_{1,7} \cup \mathrm{~K}_{1,16}$ is not a skolem mean graph.

Hence the graph $K_{1, \mathrm{~m}} \cup \mathrm{~K}_{1,2 \mathrm{~m}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+4}$ is not a skolem mean graph.

Case 7: let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m + 1}$.

Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{f}}=\mathrm{K}_{1, \mathrm{~m}+\mathrm{l}} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+7}$. let $\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+1\right\},\{\mathrm{v}\}$, $\left\{\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+1\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+7\right\}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}+1}, \mathrm{~K}_{1,2 \mathrm{~m}+1}$ and $\mathrm{K}_{1,3 \mathrm{~m}+7}$ respectively.Then $\mathrm{K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+7}$ has $6 \mathrm{~m}+$ 12 vertices and $6 \mathrm{~m}+9$ edges.

Definef: $V\left(\mathrm{~K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+7}\right) \rightarrow\{1$, $2,3, \ldots, 6 m+12\}$ byf $(w)=6 m+11, f\left(w_{k}\right)=2 k$ $-1,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+5$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+6}\right)=6 \mathrm{~m}+10, \mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+7}\right.$) $=6 \mathrm{~m}+12 . \mathrm{f}(\mathrm{v})=4, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{~m}+2 \mathrm{j}+6,1 \leq \mathrm{j} \leq$ $2 \mathrm{~m}+1 \operatorname{andf}(\mathrm{u})=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}+1$. The edge label of ww_{k} is $3 \mathrm{~m}+\mathrm{k}+5,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+5$, $6 \mathrm{~m}+11$ and $6 \mathrm{~m}+12$. The edge label of vv_{j} is $\mathrm{m}+\mathrm{j}+$ $5,1 \leq \mathrm{j} \leq 2 \mathrm{~m}+1$ and the edge label of uu_{i} is $\frac{\mathrm{m}+2 \mathrm{i}+2}{2}, 1 \leq \mathrm{i} \leq \mathrm{m}+1$.

Hence the induced edge labels $6 \mathrm{~m}+9$ are not receiving distinct edges.

The Skolem mean labeling of $\mathrm{K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup$ $\mathrm{K}_{1,3 \mathrm{~m}+7}$ are illustrated in Fig.2.15, Fig.2.16 and Fig.2.17 respectively.

Consider the graph $G=K_{1,5} \cup K_{1,9} \cup K_{1,19}$ where $\mathrm{m}=4$.

Then $|\mathrm{V}|=\mathrm{p}=36$ and $|\mathrm{E}|=\mathrm{q}=33$.

K1,9

$K_{1,5}$

Therefore, the edge label of $(35,1)$ is 18 in $\mathrm{K}_{1,19}$ and the edge label of $(4,32)$ is 18 in $\mathrm{K}_{1,9}$.

Therefore, the two edge labels are same in the graph.

Therefore, the edge labels are not distinct in the graph.

Therefore, the graph $G=\mathrm{K}_{1,5} \cup \mathrm{~K}_{1,9} \cup \mathrm{~K}_{1,19}$ is not a skolem mean graph.

Hence the graph $\mathrm{K}_{1, \mathrm{~m}+1} \cup \mathrm{~K}_{1,2 \mathrm{~m}+1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+7}$ is not a skolem mean graph.

Case 8: let $\ell=\mathbf{t}=\mathbf{m}+2$.
Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}+2} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+10}$. let $\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+2\right\},\{\mathrm{v}\},\{$ $\left.\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+3\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+10\right\}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}+2}, \mathrm{~K}_{1,2 \mathrm{~m}+3}$ and $\mathrm{K}_{1,3 \mathrm{~m}+10}$ respectively. Then $\mathrm{K}_{1, \mathrm{~m}+2} \cup \mathrm{~K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+10}$ has 6 m +18 vertices and $6 m+15$ edges.

Definef: V $\left(\mathrm{K}_{1, \mathrm{~m}+2} \cup \mathrm{~K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+10}\right) \rightarrow\{1$, $2,3, \ldots, 6 \mathrm{~m}+18\} \operatorname{byf}(\mathrm{w})=6 \mathrm{~m}+17, \mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=2 \mathrm{k}$ $-1,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+8$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+9}\right)=6 \mathrm{~m}+16, \mathrm{f}($ $\left.\mathrm{w}_{3 \mathrm{~m}+10}\right)=6 \mathrm{~m}+18 . \mathrm{f}(\mathrm{v})=4, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{~m}+2 \mathrm{j}+8,1$ $\leq \mathrm{j} \leq 2 \mathrm{~m}+3$ and $\mathrm{f}(\mathrm{u})=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}$
+2 . The edge label of $w w_{k}$ is $3 m+k+8,1 \leq k \leq 3 m$ $+8,6 m+17$ and $6 m+18$. The edge label of vv_{j} is m $+j+6,1 \leq j \leq 2 m+3$ and the edge label of ${u u_{i}}_{i}$ is $\frac{m+2 i+2}{2}, 1 \leq i \leq m+2$.

Hence the induced edge labels $6 \mathrm{~m}+15$ are not receiving distinct edges.

The Skolem mean labeling of $\mathrm{K}_{1, \mathrm{~m}+2} \cup \mathrm{~K}_{1,2 \mathrm{~m}+3} \cup$ $\mathrm{K}_{1,3 \mathrm{~m}+10}$ are illustrated in Fig.2.18, Fig. 2.19 and Fig. 2.20 respectively.

Consider the graph $G=K_{1,6} \cup \mathrm{~K}_{1,11} \cup \mathrm{~K}_{1,22}$ where $m=4$.

Then $|\mathrm{v}|=\mathrm{p}=42$ and $|\mathrm{E}|=\mathrm{q}=39$.

$\mathbf{K}_{1,22}$

K1,11

$\mathbf{K}_{1,6}$

Therefore, the edge label of (41,1) is 21 in $\mathrm{K}_{1,22}$ and the edge label of $(4,38)$ is 21 in $K_{1,11}$.

Therefore, the two edge labels are same in the graph.

Therefore, the edge labels are not distinct in the graph.

Therefore, the graph $G=K_{1,6} \cup K_{1,11} \cup K_{1,22}$ is not a skolem mean graph.

Hence the graph $\mathrm{K}_{1, \mathrm{~m}+2} \cup \mathrm{~K}_{1,2 \mathrm{~m}+3} \cup \mathrm{~K}_{1,3 \mathrm{~m}+10}$ is not a skolem mean graph.

Case 9: let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m}+\mathbf{3}$.
Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}+3} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+13}$.let $\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+3\right\},\{\mathrm{v}\}$, $\{$ $\left.\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+5\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq 3 \mathrm{~m}+13\right\}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}+3}, \mathrm{~K}_{1,2 \mathrm{~m}+5}$ and $\mathrm{K}_{1,3 \mathrm{~m}+13}$ respectively.Then $\mathrm{K}_{1, \mathrm{~m}+3} \cup \mathrm{~K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+13}$ has 6 m +24 vertices and $6 \mathrm{~m}+21$ edges.

Definef: $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{~m}+3} \cup \mathrm{~K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+13}\right) \rightarrow\{1$, $2,3, \ldots, 6 \mathrm{~m}+24\}$ by $\mathrm{f}(\mathrm{w})=6 \mathrm{~m}+23, \mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=2 \mathrm{k}-$ $1,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+11$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+12}\right)=6 \mathrm{~m}+22$, $\mathrm{f}($ $\left.\mathrm{w}_{3 \mathrm{~m}+13}\right)=6 \mathrm{~m}+24$. $\mathrm{f}(\mathrm{v})=4, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=2 \mathrm{~m}+2 \mathrm{j}+10$, $1 \leq \mathrm{j} \leq 2 \mathrm{~m}+5$ andf $(\mathrm{u})=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+2 \mathrm{i}, 1 \leq \mathrm{i} \leq$ $\mathrm{m}+3$. The edge label of ww_{k} is $3 \mathrm{~m}+\mathrm{k}+11,1 \leq \mathrm{k} \leq$ $3 m+11,6 m+23$ and $6 m+24$. The edge label of $v v_{j}$ ism $+\mathrm{j}+7,1 \leq \mathrm{j} \leq 2 \mathrm{~m}+5$ and the edge label of uu_{i} is $\frac{\mathrm{m}+2 \mathrm{i}+2}{2}, 1 \leq \mathrm{i} \leq \mathrm{m}+3$.

Hence the induced edge labels $6 \mathrm{~m}+21$ are not receiving distinct edges.

The Skolem mean labeling of $\mathrm{K}_{1, \mathrm{~m}+3} \cup \mathrm{~K}_{1,2 \mathrm{~m}+5} \cup$ $\mathrm{K}_{1,3 \mathrm{~m}+13}$ are illustrated in Fig.2.21, Fig.2.22 and Fig. 2.23 respectively.

Consider the graph $G=K_{1,7} \cup K_{1,13} \cup K_{1,25}$ where $\mathrm{m}=4$.
Then $|\mathrm{v}|=\mathrm{p}=48$ and $|\mathrm{E}|=\mathrm{q}=45$.

K1,25

$\mathbf{K}_{\mathbf{1 , 1 3}}$

$\mathbf{K}_{1,7}$
Therefore, the edge label of (47,1) is 24 in $K_{1,25}$ and the edge label of $(4,44)$ is 24 in $\mathrm{K}_{1,13}$.

Therefore, the two edge labels are same in the graph.

Therefore, the edge labels are not distinct in the graph.

Therefore, the graph $G=K_{1,7} \cup K_{1,13} \cup K_{1,25}$ is not a skolem mean graph.

Hence the graph $\mathrm{K}_{1, \mathrm{~m}+3} \cup \mathrm{~K}_{1,2 \mathrm{~m}+5} \cup \mathrm{~K}_{1,3 \mathrm{~m}+13}$ is not a skolem mean graph.

Case 10: let $\boldsymbol{\ell}=\mathbf{t}=\mathbf{m}+\mathbf{r}$ where $\mathbf{r}=\mathbf{0}, \mathbf{1 , 2 , 3 , \ldots .}$
Consider the graph $\mathrm{K}_{1, \ell} \cup \mathrm{~K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}=\mathrm{K}_{1, \mathrm{~m}+\mathrm{r}} \cup$ $\mathrm{K}_{1,2 \mathrm{~m}+2 \mathrm{r}-1} \cup \mathrm{~K}_{1,3 \mathrm{~m}+3 \mathrm{r}+4} . \operatorname{Let}\{\mathrm{u}\},\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}+\mathrm{r}\right\}$, $\{\mathrm{v}\},\left\{\mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{~m}+2 \mathrm{r}-1\right\}$ and $\{\mathrm{w}\},\left\{\mathrm{w}_{\mathrm{k}}: 1 \leq \mathrm{k} \leq\right.$ $3 m+3 r+4\}$ be the vertices of $K_{1, m+r}, K_{1,2 m+2 r-1}$ and $\mathrm{K}_{1,3 \mathrm{~m}+3 \mathrm{r}+4}$ respectively.Then $\mathrm{K}_{1, \mathrm{~m}+\mathrm{r}} \cup \mathrm{K}_{1,2 \mathrm{~m}+2 \mathrm{r}-1} \cup$ $K_{1,3 m+3 r+4}$ has $6 m+6 r+6$ vertices and $6 m+6 r+3$ edges.

Definef: V $\left(\mathrm{K}_{1, \mathrm{~m}+\mathrm{r}} \cup \mathrm{K}_{1,2 \mathrm{~m}+2 \mathrm{r}-1} \cup \mathrm{~K}_{13 \mathrm{~m}+3 \mathrm{r}+4}\right) \rightarrow$ $\{1,2,3, \ldots, 6 \mathrm{~m}+6 \mathrm{r}+6\}$ by $\mathrm{f}(\mathrm{w})=6 \mathrm{~m}+6 \mathrm{r}+5$, $\mathrm{f}($ $\left.\mathrm{w}_{\mathrm{k}}\right)=2 \mathrm{k}-1,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+3 \mathrm{r}+2$ and $\mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+3 \mathrm{r}+3}\right)=6 \mathrm{~m}+$ $6 \mathrm{r}+4, \mathrm{f}\left(\mathrm{w}_{3 \mathrm{~m}+3 \mathrm{r}+4}\right)=6 \mathrm{~m}+6 \mathrm{r}+6 . \mathrm{f}(\mathrm{v})=4, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)$ $=2 \mathrm{~m}+2 \mathrm{j}+2 \mathrm{r}+4,1 \leq \mathrm{j} \leq 2 \mathrm{~m}+2 \mathrm{r}-1$ and $\mathrm{f}(\mathrm{u})=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)$ $=m+2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}+\mathrm{r}$. The edge label of ww k is $3 \mathrm{~m}+$ $3 \mathrm{r}+\mathrm{k}+2,1 \leq \mathrm{k} \leq 3 \mathrm{~m}+3 \mathrm{r}+2,6 \mathrm{~m}+6 \mathrm{r}+5$ and 6 m
$+6 \mathrm{r}+6$. The edge label of vv_{j} is $\mathrm{m}+\mathrm{j}+\mathrm{r}+4,1 \leq \mathrm{j} \leq$ $2 m+2 r-1$ and the edge label of ${u u_{i}}$ is $\frac{m+2 i+2}{2}, 1 \leq$ $\mathrm{i} \leq \mathrm{m}+\mathrm{r}$. Also, the edge label of ww_{1} is $3 \mathrm{~m}+3 \mathrm{r}+3$ and the edge label of ${v v_{2 m+2 r-1}}$ is $3 m+3 r+3$. Therefore, the edge labels are not distinct. Therefore, the induced edge labels $6 \mathrm{~m}+6 \mathrm{r}+3$ are not receiving distinct edges. Which is a contradiction. Hence $K_{1, \ell} \cup$ $\mathrm{K}_{1, \mathrm{p}} \cup \mathrm{K}_{1, \mathrm{q}}$ is not a skolem mean graph if $|\mathrm{p}-\mathrm{q}|>$ $4+\ell$.Where $\ell=1,2,3, \ldots$.Hence the theorem.

Conclusion

The communications network addressing: A communication network is composed of nodes, each of which has computing power and can transmit and receive messages over communication links, wireless or cabled. The basic network topologies include fully connected, mesh, star, ring, tree, bus. A single network may consist of several interconnected subnets of different topologies.

Networks are further classified as Local Area Networks (LAN), e.g. inside one building, or Wide Area Networks (WAN), e.g. between buildings. It might beuseful to assign each user terminal a "node label," subject to the constraint that all connecting "edges" (communication links) receive distinct labels. In this way, the numbers of any two communicating terminals automatically specify (by simple subtraction) the link label of the connecting path; and conversely, the path label uniquely specifies the pair of user terminals which it interconnects.Researches may get some information related to graph labeling and its applications in communication field and can get some ideas related to their field of research.

For each kind of application, depending on problem scenario a kind of graph is used for representing the problem. A suitable labeling is applied on that graph in order to solve the problem. Starting from establishing fast and efficient communication.

References

1. Bermond J.C, Graceful graphs, radio antennae and French windmills, Graph theory
and Combinatorics, Pitman, London, (1979), 13 - 37 .
2. Balaji V, Ramesh D.S.T and Subramanian A, Skolem Mean Labeling, Bulletin of Pure and Applied Sciences, vol. 26E No. 2, 2007, 245 248.
3. Balaji V, Ramesh D.S.T and Subramanian A, Some Results on Skolem Mean Graphs, Bulletin of Pure and Applied Sciences, vol. 27E No. 1, 2008, 67-74.
4. Balaji V, Ramesh D.S.T and Subramanian A, Relaxed Skolem Mean Labeling, Advances and Applications in Discrete Mathematics, vol. 5(1), January 2010,1-22.
5. Balaji V, Ramesh D.S.T and Subramanian A, Some Results On Relaxed Skolem Mean Graphs, Bulletin of Kerala Mathematics Association, vol. 5(2) December 2009, 33 - 44.
6. Balaji V, Solution of a Conjecture on Skolem Mean Graph of stars $K_{1, \ell} \cup K_{1, m} \cup K_{1, n}$, International Journal of Mathematical Combinatorics, vol.4, 2011, 115-117.
7. Somasundaram S and Ponraj R, Mean labeling of graphs, National Academy Science letters, 26(2003), 210-213.
8. Somasundaram S and Ponraj R, Non Existence of mean labeling for a wheel, Bulletin of Pure and Applied Sciences(Section E: Mathematics \& Statistics), 22E (2003), 103 111.
9. Somasundaram S and Ponraj R, Some results on mean graphs, Pure \& Applied Mathe matika Sciences 58 (2003), $29-35$.
10. Manshath A, Balaji V, Sekar P, On Skolem Mean Labeling of Stars, Global Journal of Pure and Applied Mathematics ISSN 0973 - 1763 Volume 11, Nu mber1 (2015), pp 487 - 490.
11. Manshath A, Balaji V, Sekar P, Elakkiya M, Further Result On Skolem Mean Labeling, International Journal of Control Theory and Applications, 9(28), 2016, pp $539-541$.
12. Manshath A, Balaji V, Sekar P, Elakkiya M, On Skolem Mean Labeling For Five Star, Asian Journal of Mathematics and Computer Research 13(3):168-176 (2016). ISSN: $2395-4205(p)$,

ISSN: 2395 - 4213 (o) International Knowledge Press.
13. Manshath A, Balaji V, Sekar P, Elakkiya M, Non - Existence of Skolem Mean Labeling for Fi ve Star, International Journal of Mathematical Combinatorics ISSN 1937 - 1055 Volume2, june 2017 pp 129-134.
14. Manshath A, Balaji V, Sekar P, Elakkiya M, Further Result on Skolem Me an Labeling for Five Star, Bulletin of Kerala Mathematics Association ISSN 0973 - 2721 Volume15,No. 1 (2017, June) $85-93$.
15. Manshath A, Balaji V, Sekar P, Relaxed Skolem Mean Label for Five Star, International Journal of Mathematics and its Application ISSN: 2347 - 1557 Volume 5, Issue 4 - D (2017) , 479-484.
16. Manshath A, Balaji V, Sekar P, Relaxed Skolem Mean Labeling for Five Star, International Journal of Mathematical Archive,ISSN 2229 - 5046 ,Volume - 8(7), 2017, 216 - 224
17. Manshath A, Balaji V, Sekar P, Non Existence of Relaxed Skolem Mean Labeling for Star Graphs, International Journal of Mathematical Archive ISSN 2229 - 5046, Volume - 8(10), 2017, 110-122.
18. Manshath A, Balaji V, Sekar P, Non Existence of Skolem Mean Labeling for Four star Graph, Mathematical Sciences International Research Journal ISSN 2278-8697, Volume 6 Issue 2 (2017) .

