

OPEN ACCESS

Manuscript ID:
ASH-2024-12038492

Volume: 12

Issue: 3

Month: January

Year: 2025

P-ISSN: 2321-788X

E-ISSN: 2582-0397

Received: 25.11.2024

Accepted: 29.12.2024

Published Online: 01.01.2025

Citation:

Selvasaratha, R., and C. Velmurugan. "The Role of Information and Communication Technology in Enhancing Engineering Education within the Colleges of Pudukkottai District."

Shanlax International Journal of Arts, Science and Humanities, vol. 12, no. 3, 2025, pp. 45-51.

DOI:
[https://doi.org/10.34293/
sijash.v12i3.8492](https://doi.org/10.34293/sijash.v12i3.8492)

This work is licensed
under a Creative Commons
Attribution-ShareAlike 4.0
International License

The Role of Information and Communication Technology in Enhancing Engineering Education within the Colleges of Pudukkottai District

R. Selvasaratha

Research Scholar, Tamil University, Thanjavur, Tamil Nadu, India

 <https://orcid.org/0009-0001-2055-0363>

C. Velmurugan

Librarian and Head, Library and Information Science

Tamil University, Thanjavur, Tamil Nadu, India

Abstract

The most novel aspect of this study is the use of a mixed methods approach that combines the results of quantitative surveys with qualitative discussions. The quantitative side involved with very detailed surveys through a very detailed questionnaire and got us 89 completed responses of the ten faculty members within each institution. The qualitative aspect also included thick discussions with instructors of different engineering colleges of Pudukkottai. The list of the institutions participating in this research include Sudharsan Engineering College, MNSK College of Engineering, Mahatma Institute of Engineering & Technology, Shanmuganathan Engineering College, Mookambigai College of Engineering, Mount Zion College of Engineering and Technology, Chendhuran College of Engineering and Technology, Royal Polytechnic College, Srinivasa Polytechnic College, and Don Bosco Polytechnic College. The purpose of this research is to understand how educators make use of information and communication technology.

Keywords: Information and Communication Technology, Engineering Education, Resources, Challenges

Introduction

The sector that provides engineering education in India is grappling with the problem that it has to maintain high standards of academic performance while meeting up with rapid technological progress. This is particularly relevant for the Pudukkottai District where an attempt is made to enhance the educational framework. This context is then driven by Information and Communication Technology (ICT) which provides many opportune benefits to students and educators. ICTs provide interactive learning experience for students to understand complex concepts in the simulated environment. It interlinks the instrained knowledge with the application of the knowledge, resulting to better educational outcomes. In addition, ICT opens new avenues to Pudukkottai's rural students to access valuable information and guidance by experts, which was not accessible before. ICT presents a great promise for the integration into traditional engineering education. This integration signals at a hopeful future for engineering education as the Pudukkottai District continues its educational reforms. The focus of this study is of the incorporation of ICT tools in the engineering colleges for improvement of educational performance of the Pudukkottai District.

ICT in Engineering Education

Information and Communication Technology (ICT) increases on the learning and communication. Included in this are necessary hardware such as computers and smart boards which are vital to applying technology to the learning environment. Also, various software applications like simulation tools and virtual labs offers interactive and immersive learning experience. There are also ICT available such as learning management system and Massive Open Online Course (MOOC), which can make online education become more available and flexibility for the students. ICT is certainly important in modern engineering education as it provides the necessary skill and knowledge that the students need to succeed in a world that is moving at an incredible pace in the technological front. This also offers a reliability in education quality and makes the students well prepared for the future challenges.

Relevance to Engineering

Information and Communication Technology (ICT) promotes the processes of learning and communication. It includes main parts of the hardware such as the computer and the smart board that is necessary for using of technology in educational settings. Besides that, software based learning, for instance, in software available in simulation programs and virtual laboratories, makes it an engaging and interactive learning. A further aspect of ICT is that ICT encompasses a set of platforms such as learning management systems and Massive Open Online Courses (MOOCs), which make education more accessible and flexible to students online. ICT has a huge influence on engineering education that allows them to become skilled and competent in the digital world rapidly changing technology.

Profile of Study Area

It is in the southern part of the state of Tamil Nadu, India has its Pudukkottai District, which is known as a premier district for its advancements in education, especially in engineering. There is some engineering colleges there which are trying to fulfill the increases in technical education. Under graduate and post graduate courses on Computer Science, Civil, Mechanical and Electronics engineering

are offered by these government run and private institutions. Most of these colleges are associated with another university Anna University which is well identified for maintaining higher educational standards and for following the same with technical education. As a result of this affiliation, students have the advantage of structured curriculum, faculty experience and opportunities for collaboration with other educational organisations.

The Engineering colleges in Pudukkottai which attracts a student population coming from urban and rural background offers a vibrant educational environment and establishes a good ground for team work. Besides, some of these colleges are also progressing with integrating Information and Communication Technology (ICT) in the running of their courses. For example, they are building computer labs, using digital learning material, and working with the industries to enrich practical learning experience. Students exiting these colleges are expected to be well qualified for various career opportunities in local and national job market places. The placement drives and the internship opportunities offered by the institutions are very frequently there to help students get in touch with potential employers.

But colleges in Pudukkottai find it rather difficult to get better infrastructure, increase faculty's skills and make sure every student has access to modern technological resources.

Statement of Problem

The use of ICT for educating engineers has significantly influenced the teaching and learning, most especially the learning of engineering education that necessitates current knowledge and practicing skills development. However, the utilization of ICT in engineering colleges of Pudukkottai District is not known in full. The use of ICT tools and its effects on teaching methods, student engagement, performances seem to have a huge gap in awareness. The many advantages of ICT notwithstanding, there are present challenges like lack of infrastructure, lack of trained personnel as well as resistance to change that may work against its successful implementation. The purposes of this study are to understand the extent of the use of ICT in Engineering education in Pudukkottai District, to discover the barriers to this

integration and to evaluate the impact of this in order to improve educational quality. Through the analysis of such problems, the research attempts to lay out actionable recommendations toward alleviating deficiencies in integrating and utilizing ICT within an engineering college to create a more conducive learning environment and better equipped student for the engineering world that calls for efficient methods for managing work.

Objectives of the Study

- So as to evaluate ICT resource accessibility and utilisation within engineering institutions in Pudukkottai District.
- Identify the bottlenecks that could exist in the concept of adopting ICT tools.

Null and Alternative Hypotheses

H_0 : There is no such relation between ICT tools and the barriers to IC tool's adoption found between Pudukkottai District engineering colleges.

H_1 : A close relationship is observed in Pudukkottai District in the correlation between the usage of ICT resources and ICT tool issues that ensue in engineering colleges.

Scope of the Study

This paper focuses on the utilization of engineering education in Pudukkottai District of Tamil Nadu by the use of information and communication technology (ICT). This objective is related to evaluating ICT tools and resources on how they improve teaching and learning processes. It also evaluates how these technologies affect educational outcomes and the difficulties faced by institutions in transitioning to these technologies. It works on addressing various parts such as the online platforms, online platforms and their effectiveness in the simulations and virtual labs, availability of resources for the students living in remote areas, and also the improved collaboration between students and instructors. It also attempts to comprehend how ICTs impact the development of engineering curriculum and student dealings, providing meaningful assessment for designing future engineering education policies and practices.

Methodology

This research also attempts to analyze comprehensive quantitative and qualitative methods using the surveys and interviews carried out on the faculty at the engineering colleges in Pudukkottai like Sudharsan Engineering College and MNSK College of Engineering. A structured questionnaire was used yielding 89 responses to understand the underlying faculties' experience of integrating Information and Communication Technology (ICT) into existing teaching practice. An aspect of the study that significantly impacts on the field of education is the way in which these technologies can be used to better educational outcomes for engineering students.

Limitations

However the study has its limitations as it has small sample size which is neither random nor it can't draw whole sample from certain engineering colleges in Pudukkottai District.

If respondents give socially desirable answers about ICT use in education, they may distort the results, weakening data authenticity.

Data Analysis and Interpretation

Table 1 Experience of the Faculty

Experience of the Faculty	Number of Respondents	Percentage
Less than 5 Years	18	20.22
5-7 Years	23	25.84
7-10 Years	29	32.58
More than 10 years	19	21.35
Total	89	100

Source: Primary Data

The table presents the experience levels of faculty members based on their years of service. Among the 89 participants, 18 faculty members (approximately 20.22%) have less than five years of experience. A slightly larger group, consisting of 23 individuals (around 25.84%), has between five to seven years of service. The largest segment includes 29 faculty members with seven to ten years in academia, accounting for 32.58%. Lastly, 19 respondents (21.35%) have over ten years of experience. This diversity in experience highlights a

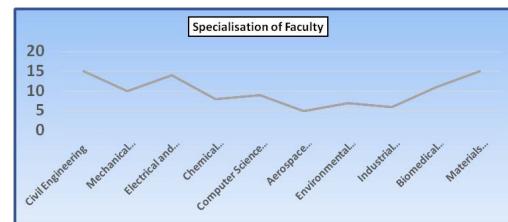

blend of innovative ideas and established knowledge within academic settings.

Table 2 Specialisation of the Faculty

Specialisations of the Faculty	Number of Respondents	Percent
Civil Engineering	15	16.85
Mechanical Engineering	10	11.24
Electrical and Electronics Engineering	14	15.73
Chemical Engineering	8	8.99
Computer Science and Engineering	9	10.11
Aerospace Engineering	5	5.62
Environmental Engineering	7	7.87
Industrial Engineering	6	6.74
Biomedical Engineering	11	12.36
Materials Engineering	15	16.85
Total	89	100

Source: Primary Data

The area of expertise of the faculty members in the studied group is presented in the table. Civil Engineering and Materials Engineering have the second and the third largest representation with 15 members each, and concerned with respectively 6.75 % and 6.75 % of the total in Civil Engineering and Materials Engineering. 14 faculty forms 50.98% of the academic staff, closely followed by Electrical and Electronics Engineering with 15.73%. There are also 11 faculty members, or 12.36%, in Biomedical Engineering. Computer Science and Engineering group has ten members, or 10.11% and Mechanical Engineering has 10 specialists or 11.24%. There are eight faculty in Chemical Engineering (of whom 8.99%) and seven in Environmental Engineering (7.87%). A total of sixteen (16) respondents are industrial engineering, six (6) or 6.74%, and it has the least number of respondents with five (5) or 5.62%, which belongs to aerospace engineering. The illustration of the specialisation amongst different engineering fields is also very well displayed by this data.

Figure 1

Table 3 The Availability and use of ICT Resources in Engineering Colleges of Pudukkottai District

ICT Resources in Engineering Colleges	Mean Score	Rank
Computers and Workstations	4.248	II
Software Applications	4.362	I
Internet Connectivity	3.292	XII
Learning Management Systems (LMS)	4.125	VI
Multimedia Equipment	4.179	III
Virtual Labs and Simulators	3.370	X
Digital Libraries and Online Journals	3.586	IX
Data Storage Solutions	4.155	V
Collaboration Tools	3.203	XI
3D Printers and Scanners	3.969	VIII
Cybersecurity Tools	4.163	IV
Virtual Reality (VR) and Augmented Reality (AR) Devices	4.043	VII

Source: Primary Data

The availability and utilisation of different information and communication technology (ICT) resources in engineering colleges of different Pudukkottai District based on their average scores have been presented in the table. The average score of 4.362 signifies the extensive adoption and importance of software applications in engineering education led by software applications. Following closely behind computers and workstations (mean score of 4.248), second place is taken up by means of computers and workstations which are crucial for getting everyday academic work done.

Third in line is multimedia equipment which receives an average score of 4.179 indicating the importance of multimedia equipment for teaching and presenting. Thus, cybersecurity tools score 4.163 and rank fourth, indicating their importance to protect institutional data. The fifth place in data

storage solution's average score of 4.155 relies on ensuring the security and the efficiency in data management.

Learning management systems (LMS) is the sixth important function held with average score of 4.125 as it is concerned in course management and student assessments. The seventh is VR and AR devices with an average of 4.043, which shows how these are becoming increasingly relevant in immersive education experience.

The ranking of 8th, and a mean score of 3.969, indicates the 3D printers and scanners in use to aid design and prototyping processes. The ninth in the ranking for the importance of academic resources are digital libraries and online journals, which score an average of 3.586. The tenth most used to aid practical learning experiences is virtual labs and simulators with a mean score of 3.370.

The eleventh position is collaboration tools that have an average score of 3.203 indicating its important to promote teamwork faculty and student. Internet connectivity is the last and it ranks lowest, with a mean of 3.292, which tells that they need to improve in the reliability or coverage of the internet connectivity services. The ranking has an important value in understanding the differences in the use and availability of ICT resources in engineering colleges of Pudukkottai District.

Table 4 Problems of Engineering Faculty in Using ICT Resources

Problems in Using ICT Resources	Number of Respondents	% On Total
Infrastructure Limitations	52	58.43
Funding Constraints	49	55.06
Technical Support	44	49.44
Training and Awareness	39	43.82
Resistance to Change	36	40.45
Maintenance Issues	29	32.58
Digital Divide	38	42.70
Cybersecurity Risks	37	41.57
Integration Challenges	27	30.34
Content Relevance	21	23.60

Source: Primary Data

This is the detailed table of the main obstacles that the engineering faculty face in exploiting ICT

resources. The biggest challenge is resource, as 52 participants (58.43%) are negatively affected by it. Secondly, funding is reported to be insufficient by 49 participants (55.06%). The technical support 44 respondents (49.44%) and training and awareness problems are cited by 39 (43.82%) individuals respectively. In addition, 36 respondents (40.45%) declare resistance to change implying the facet of some faculty members reluctant to adopt newer technologies. Based on 29 participants (32.58%) maintenance problems are highlighted and 38 respondents (42.70%) are highlighted on the digital divide showing the disparities of technology access. According to 37 respondents (41.57%), the concerns they raise are related to risks of cybersecurity and the importance of data protection. Integration and content relevancy issues affect 27 (30.34%) of the participants, and 21 (23.60%) respond to content relevancy as an obstacle. These as well as many other findings call for improved infrastructure, funding, support, training, and awareness in the use of ICT resources in order to make full use of the potential of ICT in engineering education.

Table 4 Association between ICT Resource Use and Challenges in Adopting ICT Tools in Pudukkottai District Engineering Colleges

Problems in Using ICT Resources	χ^2 Value	Alpha Value
Infrastructure Limitations	3.452	< 0.05*
Funding Constraints	4.186	< 0.05*
Technical Support	0.541	> 0.05**
Training and Awareness	0.742	> 0.05**
Resistance to Change	0.716	> 0.05**
Maintenance Issues	3.796	> 0.05**
Digital Divide	0.423	> 0.05**
Cybersecurity Risks	3.465	< 0.05*
Integration Challenges	0.796	> 0.05**
Content Relevance	0.478	> 0.05**

Source: Primary Data

In detailing the primary challenges engineering faculty encounter on using ICT resources, the table is used. The greatest problem is poor infrastructure which explains that 52 faculty members (57.43%) are hit. This is followed by 49 members (55.06%) who cite the funding issue, and that causes sufficient

funding to be a subsequent problem. Technical support issues concern 44 respondents (44%) while the issues associated with training and awareness are experienced by 39 respondents (39.82%). 36 respondents (40.45%) said that they are resistant to change because some faculty is resistant to adopting new technologies. 29 respondents (32.58%) report maintenance issues, and 38 (42.70%) claim the digital divergence. 37 respondents (41.57%) are concerned about the cybersecurity risk and the data security deserves a great deal of importance. Twenty seven faculty members (30.34 percent) face integration challenges, 21 respondents (23.60 percent) declares lack of relevance of available content. Such statistics underscore various impediments which impede the use of ICT as a resource for effective engineering education and underwrite the inadequacy of an adequate infrastructure, funding, support, guidance, training and awareness to exploit ICT in education for effective engineering education.

Findings

The study, which had 89 respondents, found that 20.22% of faculty members have less than 5 years of experience, 25.84% have 5 to 7 years, 32.58% have 7 to 10 years, and 21.35% have over 10 years of experience.

The survey includes 15 faculty members in Engineering and Materials Engineering (16.85%), followed by Electrical and Electronics Engineering with 14 (15.73%) and Biomedical Engineering with 11 (12.36%). Other disciplines include Mechanical Engineering (10), Computer Science and Engineering (9), Chemical Engineering (8.99%), Environmental Engineering (7.87%), Industrial Engineering (6.74%), and Aerospace Engineering with the least at 5 (5.62%). This shows a balanced mix of expertise across engineering fields.

Software applications hold the top rank with the highest mean score of 4.362, indicating their widespread use and importance in engineering education. Computers and workstations follow closely, ranked second with a mean score of 4.248, highlighting their essential role in daily academic activities. Multimedia equipment is ranked third with a mean score of 4.179, underscoring its significance in enhancing teaching and presentations.

For ICT resource use, problems like infrastructure limitations, funding constraints and cybersecurity risks contribute substantially and χ^2 values of 3.452, 4.186, and 3.465 ($\alpha < 0.05$), respectively. On the contrary, the values of technical support, training, resistance to change, maintenance, digital divide, integration problems and relevance of content do not seem to have any strong relationship with the use of ICT resources in these colleges ($\chi^2 > 0.05$), which means they may not significantly influence ICT resource usage in these colleges.

Conclusion

Needless to say, given the opportunities to increase the interactivity, resource availability, and draw from rich resources, we would like to make an impact in the engineering education of Pudukkottai District. To achieve this transformation, the effort takes a collaborative effort from the educational institutions, politicians, and the local community. This gives a chance to engineering colleges in Pudukkottai to become trailblazers to technology enabled education in the rural contexts by fighting challenges and adopting innovative model. The importance of the Information and Communication Technology (ICT) in reengineering engineering education for colleges in Pudukkottai District is emphasized in this paper. Although it is a challenge to integrate technology in the learning, the gain of incorporating technology into the learning process is substantial and obvious. ICT has the potential to significantly improve learning in many ways and more interactive and effective ways of teaching. In the future, there should be attention to developing comprehensive and sustainable models for implementation of ICT in addressing existing challenges and improving overall educational outcomes of engineering students.

References

Battacharya, Bani. "Engineering Education in India - The Role of ICT." *Innovations in Education and Teaching International*, vol. 45, no. 2, 2008, pp. 9-101.

Monicka, M., and J. Jayachithra. "Information and Communication Technology Awareness of M.Ed Trainees." *JASC: Journal of Applied Science and Computations*, vol. 6, no. 1, 2019.

Mozafari, Parivash. *The Perspectives of EFL Teachers on the Integration of ICT into their Teaching Practices in Iranian schools: An Activity Theory Perspective*. The University of Warwick, 2016.

Prabakaran, B. "A Study on Information and Communication Technology Awareness among B. Ed. Trainees in Colleges of Education in Pudukkottai District." *International Journal of Informative & Futuristic Research*, vol. 3, no. 12, 2016.

Rizwan, Ali, et al. "A Preliminary Analysis of the Perception Gap between Employers and Vocational Students for Career Sustainability." *Sustainability*, vol. 13, no. 20, 2021.

Sarkar, Sukanta. "The Role of Information and Communication Technology (ICT) in Higher Education for the 21st Century." *The Science Probe*, vol. 1, no. 1, 2012, pp. 30-40.

Vijayakumar, K., and B. Mahadevan. "Utilization of E-Resources by the Faculty Members of Engineering Colleges in Pudukkottai District: A Study." *Journal of Multidisciplinary Engineering Science and Technology*, vol. 4, no. 10, 2017.

Author Details

R. Selvasaratha, Research Scholar, Tamil University, Thanjavur, Tamil Nadu, India,
Email ID: charumma90@gmail.com

C. Velmurugan, Librarian and Head, Department of Library and Information Science, Tamil University, Thanjavur, Tamil Nadu, India, **Email ID**: cvelmuruga72@gmail.com