AN EFFICIENT ALGORITHM TO DESIGN DFA THAT ACCEPT STRINGS OVER THE INPUT SYMBOL a, b, c HAVING ATMOST X NUMBER OF a, Y NUMBER OF b & Z NUMBER OF c

S.Shanmugavadivoo

Faculty in Mathematics, Madurai Kamaraj University College, Aundipatti, Theni

Dr. M.Kamaraj

Associate Professor of Mathematics, Government Arts & Science College, Sivakasi

Abstract

Automata theory has played an important role in modeling behavior of systems In this paper we propose an algorithm to construct a DFA that accept strings over input symbols a, b, c having accept strings over input symbols a, b, c having atmost x number of a, y number of b & z number of c.

Keywords: DFA, Automata, strings, Implementation, symbol

Introduction

Automata theory has proved to be a counterstone of theoretical computer science. In search of simplest models to capture the finite state machines, MC Culloch and Pitts were among the first researchers to introduce a concept similar to finite automaton in 1943 (1)

Automata theory has become a basis in theoretical computer science because of its various applications(2). Danish Ather and others develop an efficient algorithm to design DFA that accept strings over input symbol a, b having at most x number of a & y number of b (3). We are motivated by this to develop an Algorithm to design DFA over three input symbols a, b, c that accept strings having atmost x number of a, y number of b & z number of c. We use the following definition of DFA & acceptance of strings in this paper.

Definition

Finite Automata (M) is defined as a five tuple (Q, Σ , δ , q_0 , F) Where

Q - a finite, non empty set of states

Σ - a finite, non empty set of inputs

 δ - Q X $\Sigma \rightarrow Q$ is the state - transition function

 $q_0 \in Q$ is the initial state

 $F \subseteq Q$ is the set of final states

Definition

A string $w \in \Sigma^*$ is said to be accepted by a DFA M if δ $(q_0, w) \in F$ **2.Algorithm**:

By Applying this Algorithm we can construct Deterministic Finite Automate that accept strings over input symbol a, b, c having atmost x number of a, y number of b & Z number of c.

```
Algorithm
                 to
                          draw
                                     Transition
                                                        Graph
                                                                     Deterministic
                                                                                            Finite
                                                                                                         Automata
          M - (Q, \Sigma, \delta, q_0, F) where
          Q = \{q_{0jk}\}\ U \{q_{i0k}\}\ U \{q_{ij0}\}\  where i = 0 to x, j = 0 to y, k = 0 to z
          \Sigma = \{a, b, c\}
          \delta - Q X Σ \rightarrow Q (Represented by Transition Graph)
          q_0 = q i_{jk \text{ Where}} i = j = k = 0 ie q_{000}
          F = Q
Let Q be the set of states in Deterministic Finite Automata such that
          Q - \{q_{000}, q_{011}, q_{021}, q_{0jk}, q_{101}, q_{201,....}, q_{i0k}, q_{110,...}, q_{ijo}\}
Where i - 0 to x
          j - 0 \text{ to } y
          k - 0 to z
Input symbol \Sigma = \{a, b, c\}
q<sub>000</sub> is the initial state
Design a directed transition graph having
(x+1) (y+1) + (y+1) (z+1) + (x+1) (z+1) - (x+y+z+2)
states and mark all states as final states label each node as q_{000}, q_{110}, q_{011}, q_{021}, ...... q_{ojk}, q_{010},
q_{110, \dots} q_{j_0, q_{001}, q_{101}, q_{201}, \dots} q_{i_{0k}} Where i = 0 to x, j = 0 to y, k = 0 to z
          For i = 0 to x
          do
          For j - 0 to y
          For k - O to z
if l=j=k=0 then q_{000} \in Q_0 (initial state)
else there exist a edge E such that
          \delta (q i_{jo, a}) = q (i_{+1) jo}; \quad \delta (q(i_{ok, a}) = q (i_{+1) ok};
          \delta (q_{0jk, b}) = q_{0(j+1)k}; \delta (q_{ij0, b}) = q_{i(j+1)0};
          \delta (q_{0jk, c}) = q_{0j(K+1)}; \delta (q_{i0k, c}) = q_{i0(K+1)}
done inner loop
done outer loop
```

DFA "M" will accept strings over input symbol a, b, c having atmost x number of a, y number of b & number of c.

Implementation

Design a DFA that accept strings over Input symbol a, b, c having atmost three a's; three b's of three c's

```
Let the resultant DFA is M - ( Q, \Sigma, \delta, q<sub>0</sub>, F) where {q<sub>0jk</sub>} U {q<sub>i0k</sub>} U {q<sub>ij0</sub>} where i = 0 to 3, j = 0 to 3, k = 0 to 3
```

 $\Sigma = \{a, b, c\}$ $Q_0 = q_{000}$ F = Q

 δ - Q X $\Sigma \rightarrow$ Q is given by the transition graph in Figure1

Figure 1 TG of DFA that accept strings over input symbol a, b, c having atmost 3, a's, 3 b 's, 3 c 's

Design a DFA that accept strings over input symbol a,b,c having atmost only one a, two b & two C

Let the resultant DFA is M = (Q, Σ , δ , q_0 , F) where

 $Q = \begin{cases} q_{000}, q_{100}, q_{010}, q_{110}, q_{020}, q_{120}, q_{001}, q_{101}, q_{002}, q_{102}, q_{022}, q_{021}, q_{012}, q_{011} \\ Z = \begin{cases} \{a, b, c\} \end{cases}$

 δ - Q X $\Sigma \rightarrow$ Q is given by the transition graph in Fig2

 $\begin{array}{ccc} Q_0 & - & q_{000}, \\ F & = & Q \end{array}$

Figure 2 TG of DFA that accept strings over Input symbol a, b, c having atmost one a, two b's & two c's

Design a DFA that accept strings over input symbol a,b,c having atmost two a's two b's & two c's

Let the resultant DFA is

 $M = (Q, \Sigma, \delta, q_0, F)$

Q = $\{q_{ojk}\}$ U $\{q_{i0k}\}$ U $\{q_{ij0}\}$ where i = 0 to 2, j = 0 to 2, k = 0 to 2

 $\Sigma = \{a, b, c\}$

 $Q_0 - q_{000}$

 δ - Q X $\Sigma \rightarrow$ Q is given by the transition graph in Fig2

F = Q

Figure 3 TG of DFA that accept strings over input symbol a, b, c having atmost two a's, two b's & two c's

Analysis of Acceptance of Strings

4.1 In the DFA given in Fig1, the following strings are checked whether they are accepted or rejected and the result is given below.

Strings	Result
a a b	Accepted
a a b c b b b	Rejected
abcabcaa	Rejected
bcabaca	Accepted
aabccc	Accepted
caabaab	Rejected

4.2 In the DFA given in Fig 2 the following strings are verified whether they are accepted or rejected and the result is given below.

Strings	Result
aabc	Rejected
aaac	Rejected
abbcc	Accepted
b b c c	Accepted
a b b c c	Accepted
a b c	Accepted
ababab	Rejected

4.3 In the DFA given in Fig 3 the following strings are verified whether they are accepted or rejected and the result is given below.

Strings	Result
a b a c c b	Accepted
a a b b c c	Accepted
cabbbc	Rejected
a b c c	Accepted
a b c b c	Accepted
b a c	Accepted

Conclusion

Thus in this paper, we give an efficient algorithm to design a DFA that accept strings over input symbol a, b, c having atmost x number of a, y number of b & z number of c. In the next research, we will give an algorithm over more than 3 input symbols.

Vol. 3 No. 1 July 2015 ISSN: 2321 – 788X

References

- 1. Lawson, Mark V (2004) Finite automata, Chapman and Hall / CRC. ISBN 1 58488 255 -7 zbi 1086 68074
- 2. J.A Anderson, Automata theory with modern applications, Cambridge University Press ISBN: 9780511223013, 2006.
- 3. Danish Ather, Raghuraj Singh, Vinodani Katiyar "An Efficient Algorithm to Design DFA that Accept strings over Input symbol a, b having atmost x number of a, y number of b Journal of Nature Inspired Computing (JNIC) Vol1, No2, 2013.
- 4. Hopcroft, John Motwani Rajeev, Ulman, Jeffrey D.Introduction to Automata Theory, languages and computation (2nd edition) Adolision Wesely. ISBN No 201 44124-1 Retrieved 19 November 2012
- 5. Rabin M.O. Scott.D (1959) "Finite Automata' and their decision problems, IBMJ Res.Develop 114 -125.