AN EFFICIENT ALGORITHM TO DESIGN DFA THAT ACCEPT STRINGS OVER THE INPUT SYMBOL a, b, c HAVING ATMOST X NUMBER OF a, Y NUMBER OF b \& Z NUMBER OF c

S.Shanmugavadivoo
Faculty in Mathematics, Madurai Kamaraj University College, Aundipatti, Theni Dr. M.Kamaraj
Associate Professor of Mathematics, Government Arts \& Science College, Sivakasi

Abstract

Automata theory has played an important role in modeling behavior of systems In this paper we propose an algorithm to construct a DFA that accept strings over input symbols a, b, c having accept strings over input symbols a, b, c having atmost x number of a, y number of $b \& z$ number of c.
Keywords: DFA, Automata, strings, Implementation, symbol

Introduction

Automata theory has proved to be a counterstone of theoretical computer science. In search of simplest models to capture the finite state machines, MC Culloch and Pitts were among the first researchers to introduce a concept similar to finite automaton in 1943 (1)

Automata theory has become a basis in theoretical computer science because of its various applications(2). Danish Ather and others develop an efficient algorithm to design DFA that accept strings over input symbol a, b having at most x number of $\mathrm{a} \& \mathrm{y}$ number of b (3). We are motivated by this to develop an Algorithm to design DFA over three input symbols $\mathrm{a}, \mathrm{b}, \mathrm{c}$ that accept strings having atmost x number of a, y number of $\mathrm{b} \& \mathrm{z}$ number of c. We use the following definition of DFA \& acceptance of strings in this paper.

Definition

Finite Automata (M) is defined as a five tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}$) Where
Q - a finite, non empty set of states
Σ - a finite, non empty set of inputs
$\delta \quad-\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is the state - transition function
$\mathrm{q}_{0} \in \mathrm{Q}$ is the initial state
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states

Definition

A string $\mathrm{w} \in \Sigma^{*}$ is said to be accepted by a DFA M if $\delta\left(\mathrm{q}_{0}, \mathrm{w}\right) \in \mathrm{F} 2$. Algorithm :
By Applying this Algorithm we can construct Deterministic Finite Automate that accept strings over input symbol a, b, c having atmost x number of a, y number of $\mathrm{b} \& \mathrm{Z}$ number of c.

Algorithm to draw Transition Graph Deterministic Finite Automata
$M-\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ where
$\mathrm{Q}=\left\{\mathrm{q}_{\mathrm{ojk}}\right\} \cup\left\{\mathrm{q}_{\mathrm{iok}}\right\} \quad \mathrm{U}\left\{\mathrm{q}_{\mathrm{ij} 0}\right\} \quad$ where $\mathrm{i}=0$ to $\mathrm{x}, \mathrm{j}=0$ to $\mathrm{y}, \mathrm{k}=0$ to z
$\Sigma=\{a, b, c\}$
$\delta \quad-\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ (Represented by Transition Graph)
$q_{0}=q i_{j k}$ Where $i_{=j=k=0}$ ie q_{000},
$F=Q$
Let Q be the set of states in Deterministic Finite Automata such that
$Q-\left\{q_{000,} q_{011}, q_{021}, q_{\text {ojk }}, q_{101}, q_{201, \ldots \ldots . .} q_{i o k}, q_{110, \ldots .} q_{j o}\right\}$
Where i - 0 to x
j - 0 to y
k - 0 to z
Input symbol $\Sigma=\{a, b, c\}$
q_{000} is the initial state
Design a directed transition graph having
$(\mathrm{x}+1)(\mathrm{y}+1)+(\mathrm{y}+1)(\mathrm{z}+1)+(\mathrm{x}+1)(\mathrm{z}+1)-(\mathrm{x}+\mathrm{y}+\mathrm{z}+2)$
states and mark all states as final states label each node as $q_{000}, q_{110}, q_{011}, q_{021}, \ldots q_{0 j k}, q_{010}$, $\mathrm{q}_{110, \ldots . . .} \mathrm{q} \mathrm{i}_{\mathrm{jo}}, \mathrm{q}_{001}, \mathrm{q}_{101}, \mathrm{q}_{201 / \ldots \ldots .} . \mathrm{qi}_{\text {ok }}$, Where $\mathrm{i}=0$ to $\mathrm{x}, \mathrm{j}=0$ to $\mathrm{y}, \mathrm{k}=0$ to z

For $\mathrm{i}=0$ to x
do
For j - O to y
do
For k - O to z
do
if $\quad \mathrm{I}=\mathrm{j}=\mathrm{k}=0$ then $\mathrm{q}_{000,} \in \mathrm{Q}_{0}$ (initial state)
else there exist a edge E such that
$\delta\left(\mathrm{q}_{\mathrm{jo}, \mathrm{a}}\right)=\mathrm{q}\left(\mathrm{i}_{+1}\right)$ jo $; \quad \delta\left(\mathrm{q}_{\left(\mathrm{i}_{\mathrm{ok}, \mathrm{a}}\right)}\right)=\mathrm{q}\left(\mathrm{i}_{+1}\right)$ ok $;$
$\delta\left(\mathrm{q}_{\mathrm{ojk}, \mathrm{b})}=\mathrm{q}_{\mathrm{o}(\mathrm{j}+1) \mathrm{k}} ; \quad \delta\left(\mathrm{q}_{\mathrm{i}}^{\mathrm{j} \mathrm{o}, \mathrm{b}},\right)=\mathrm{q} \mathrm{i}_{(\mathrm{j}+1) \mathrm{o}} ;\right.$
$\delta\left(\mathrm{q}_{\mathrm{ojk}, \mathrm{c})}=\mathrm{q}_{\mathrm{oj}(\mathrm{k}+1)} ; \quad \delta\left(\mathrm{q}_{\left(\mathrm{i}_{\mathrm{ok}, \mathrm{c}}\right)}\right) \mathrm{qi}_{\mathrm{o}(\mathrm{k}+1)}\right.$
done inner loop
done outer loop
DFA " M " will accept strings over input symbol $\mathrm{a}, \mathrm{b}, \mathrm{c}$ having atmost x number of a, y number of $b \&$ number of c.

Implementation

Design a DFA that accept strings over Input symbol a, b, c having atmost three a's; three b's of three c's

Let the resultant DFA is $M-\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$ where
$\left\{\mathrm{q}_{\mathrm{ojk}}\right\} \quad \cup\left\{\mathrm{q}_{\mathrm{iok}}\right\} \quad \mathrm{U}\left\{\mathrm{q}_{\mathrm{ij} 0}\right\} \quad$ where $\mathrm{i}=0$ to $3, \mathrm{j}=0$ to $3, \mathrm{k}=0$ to 3

$$
\begin{aligned}
& \Sigma=\{a, b, c\} \\
& \mathrm{Q}_{0}-\mathrm{q}_{000}, \\
& \mathrm{~F}=\mathrm{Q} \\
& \delta=\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q} \text { is given by the transition graph in Figure1 }
\end{aligned}
$$

Figure 1 TG of DFA that accept strings over input symbol a, b, c having atmost 3, a’s, 3 b 's, 3 c 's

Design a DFA that accept strings over input symbol a,b,c having atmost only one a, two b \& two C

Let the resultant DFA is $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$ where
$\mathrm{Q}=\left\{\begin{array}{l}\left.\mathrm{q}_{000}, \mathrm{q}_{100}, \mathrm{q}_{010}, \mathrm{q}_{110}, \mathrm{q}_{020}, \mathrm{q}_{120}, \mathrm{q}_{001}, \mathrm{q}_{101}, \mathrm{q}_{002}, \mathrm{q}_{102}, \mathrm{q}_{022}, \mathrm{q}_{021}, \mathrm{q}_{012}, \mathrm{q}_{011}\right\} \\ \{a, b, c\}\end{array}\right\}$
$\delta-\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is given by the transition graph in Fig2
$Q_{0}-q_{000}$,
$F=Q$

Figure 2 TG of DFA that accept strings over Input symbol a, b, c having atmost one a, two b’s \& two c's

Design a DFA that accept strings over input symbol a,b,c having atmost two a's two b's \& two c's

Let the resultant DFA is
$M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$
$\mathrm{Q}=\left\{\mathrm{q}_{\mathrm{ojk}}\right\} \cup\left\{\mathrm{q}_{\mathrm{iok}}\right\} \quad \mathrm{U}\left\{\mathrm{q}_{\mathrm{ij} 0}\right\}$ where $\mathrm{i}=0$ to $2, \mathrm{j}=0$ to $2, \mathrm{k}=0$ to 2
$\Sigma=\{a, b, c\}$
$\mathrm{Q}_{0}-\mathrm{q}_{000}$,
$\delta \quad-\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is given by the transition graph in Fig2
$F=Q$

Figure 3 TG of DFA that accept strings over input symbol a, b, c having atmost two a's, two b's \& two c's

Analysis of Acceptance of Strings

4.1 In the DFA given in Fig1, the following strings are checked whether they are accepted or rejected and the result is given below.

Strings	Result
a a b	Accepted
a a b c b b b	Rejected
a b c a b c a a	Rejected
b c a b a c a	Accepted
a a b c c c	Accepted
c a a b a a b	Rejected

4.2 In the DFA given in Fig 2 the following strings are verified whether they are accepted or rejected and the result is given below.

Strings	Result
a a b c	Rejected
a a a c	Rejected
a b b c c	Accepted
b b c c	Accepted
a b b c c	Accepted
a b c	Rejected
a b a b a b	

4.3 In the DFA given in Fig 3 the following strings are verified whether they are accepted or rejected and the result is given below.

Strings	Result
a b a c c b	Accepted
a a b b c c	Accepted
c a b b b c	Rejected
a b c c	Accepted
a b c b c	Accepted
b a c	Accepted

Conclusion

Thus in this paper, we give an efficient algorithm to design a DFA that accept strings over input symbol a, b, c having atmost x number of a, y number of $b \& z$ number of c. In the next research, we will give an algorithm over more than 3 input symbols.

References

1. Lawson, Mark V (2004) Finite automata, Chapman and Hall / CRC. ISBN 1-58488-255-7-zbi 1086-68074
2. J.A Anderson, Automata theory with modern applications, Cambridge University Press - ISBN : 9780511223013, 2006.
3. Danish Ather, Raghuraj Singh, Vinodani Katiyar "An Efficient Algorithm to Design DFA that Accept strings over Input symbol a, b having atmost x number of a, y number of b Journal of Nature Inspired Computing (JNIC) Vol1, No2, 2013.
4. Hopcroft, John Motwani Rajeev, Ulman, Jeffrey D.Introduction to Automata Theory, languages and computation (2 ${ }^{\text {nd }}$ edition) Adolision Wesely. ISBN No - 201-44124-1 Retrieved 19 November 2012
5. Rabin M.O. Scott.D (1959)
"Finite Automata’ and their decision problems, IBMJ Res.Develop 114-125.
